

DETERMINACIÓN DE LAS ÁREAS SUSCEPTIBLES A INUNDACIONES EN LA PARTE BAJA DE LA CUENCA DEL RÍO OCOSITO MEDIANTE MODELACIÓN Y PERCEPCIÓN COMUNITARIA

Guatemala, Centroamérica

DETERMINACIÓN DE LAS ÁREAS SUSCEPTIBLES A INUNDACIONES EN LA PARTE BAJA DE LA CUENCA DEL RÍO OCOSITO MEDIANTE MODELACIÓN Y PERCEPCIÓN COMUNITARIA

Guatemala, Centroamérica

Autor: Amy Molina

Impreso: Digitalhouse

Guatemala, 2017

Tiraje: 12 ejemplares

CITA BIBLIOGRÁFICA

ICC (Instituto Privado de Investigación sobre Cambio Climático). 2016. Determinación de las áreas susceptibles a inundaciones en la parte baja de la cuenca del río Ocosito mediante modelación y percepción comunitaria. Guatemala. 119 p.

ÍNDICE GENERAL

1.	INT	RODUCCIÓN	1
2.	MA	RCO TEÓRICO	2
2.	1 M	larco Conceptual	2
	2.1.1	Fenómenos Naturales	2
	2.1.2	Fenómenos Hidrometeorológicos	2
	2.1.3	Inundaciones	2
	2.1.4	Tipos de Inundaciones	3
	2.1.5	Inundación Repentina	3
	2.1.6	Llanuras de Inundación	3
	2.1.7	Amenaza	3
	2.1.8	Vulnerabilidad	4
	2.1.9	Riesgo	4
	2.1.10	Desastre	4
	2.1.11	Modelación Hidrológica	4
	2.1.12	Sistema de Modelación Hidrológica	5
	2.1.13	Modelación Hidráulica	5
	2.1.14	Sistema de Análisis de río	5
	2.1.15	Coeficiente de Simultaneidad (K _A)	5
	2.1.16	Numero de Curva	5
2.:	2 M	larco Referencial	6
	2.2.1	Estudio de prefactibilidad proyecto de drenaje y control de inundaciones parcelamiento La Blanca, Ocós, San Marcos	6
	2.2.2	Estudio de drenaje superficial en la unidad de riego La Blanca, San Marcos	6
	2.2.3	Estudio técnico de base sobre control y monitoreo de crecientes e inundaciones en el área de influencia de la cuenca media y baja, zanjón Pacayá, Ocós, San Marcos	7
	2.2.4	Evaluación preliminar de los ríos Ocosito y Pacayá en el área cercana a la desembocadura	8
	2.2.5	Estudios hidrológicos de los ríos Achiguate, Coyolate, María Linda y Los Esclavos	8
	2.2.6	Estudio de los procesos hidrológicos de la cuenca del río Diguillín	8
	2.2.7	Estudios hidrológicos e hidráulicos para el ordenamiento territorial de una cuenca	9

3.	OB	JETIVOS1	0
3.	1 C	Dbjetivo General1	0
3.2	2 C	Objetivos Específicos1	0
4.	ME	TODOLOGÍA1	1
4.	1 C	Caracterización1	1
4.2	2 N	Nodelaciones1	2
4.3	3 P	Percepción Comunitaria1	5
5.	RE:	SULTADOS Y DISCUSIÓN1	6
5.	1 C	Caracterización de la cuenca del río Ocosito1	6
;	5.1.1	Características socioeconómicas1	7
	5.1.	1.1 División política1	7
	A.	.1 Población total1	8
	В.	.2 Población urbana y rural2	<u>'</u> 4
	C	.3 Población por grupo étnico2	
	5.1.	1.2 Nivel de ingresos económicos2	:6
	5.1.	1.3 Educación2	:7
	5.1.		
	5.1.	1.5 Migraciones2	:9
	5.1.	1.6 Organización social3	0
	5.1.		
	5.1.	1.8 Actividades productivas3	2
	5.1.	1.9 Infraestructura física y servicios3	2
,	5.1.2	Características biofísicas3	8
	5.1.	2.1 Clima3	8
	5.1.	2.2 Zonas de Vida5	5
	5.1.	3.1 Recurso Hídrico5	9
	5.1.	4.1 Suelos y Tierra6	1
	5.1.	5.1 Cobertura y Vegetación6	7
	5.1.	6.1 Fauna7	0
	5.1.	7.1 Problemas Ambientales7	2
5.2	2 N	Nodelaciones7	′5
,	5.2.1	Modelación Hidrológica7	'5

5.	2.2 Modelación Hidráulica	80
5.3	Percepción Comunitaria	83
6.	CONCLUSIONES	93
7.	RECOMENDACIONES	94
8.	BIBLIOGRAFÍA	95
9.	ANEXOS	100
9.1	Fotografías	100
9.2	Procedimiento HEC-HMS	104
9.3	Datos Pluviométricos	132

ÍNDICE DE CUADROS

Pá	gina
Cuadro 1. División administrativa de la cuenca Ocosito	17
Cuadro 2. Población de la cuenca Ocosito	19
Cuadro 3. Porcentaje de la cobertura municipal, por municipio, en la cuenca	
Ocosito.	21
Cuadro 4. Número de alumnos inscritos a nivel departamental	27
Cuadro 5. Número de establecimientos educativos	28
Cuadro 6. Tenencia de la tierra a nivel municipal	31
Cuadro 7. Centros de atención medica	33
Cuadro 8. Porcentaje de acceso a servicio de agua y saneamiento básico	34
Cuadro 9 Ubicación de los desechos solidos	35
Cuadro 10. Porcentaje de acceso a servicio de energía eléctrica	37
Cuadro 11. Porcentaje de las 10 primeras causas de mortalidad	37
Cuadro 12. Estaciones meteorológicas	38
Cuadro 13. Datos de la Estación Coatepeque, Quetzaltenango	39
Cuadro 14 Datos de la Estación El Palmar, Quetzaltenango	40
Cuadro 15. Datos de la Estación San Martín, Quetzaltenango	41
Cuadro 16 Datos de la Estación Suchiate, México	42
Cuadro 17 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo	
de retorno de 2 años	45
Cuadro 18 Precipitación en el área de Coatepeque, Quetzaltenango en un tiempo de	е
retorno de 5 años	46
Cuadro 19 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo	
de retorno de 10 años	48
Cuadro 20 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo	
de retorno de 25 años	49
Cuadro 21 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo	
de retorno de 50 años	51
Cuadro 22 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo	
de retorno de 75 años	52

Cuadro 23 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo	
de retorno de 100 años	54
Cuadro 24 Parámetros de Bosque Húmedo Subtropical (cálido)	56
Cuadro 25 Parámetros de Bosque Muy Húmedo Montano Bajo Subtropical	56
Cuadro 26 Parámetros de Bosque Muy Húmedo Subtropical (cálido)	57
Cuadro 27 Parámetros de Bosque Seco Subtropical	58
Cuadro 28 Aspectos morfométricos de la cuenca Ocosito	60
Cuadro 29 Datos de corrientes del río Ocosito	60
Cuadro 30 Unidades fisiográficos y geomorfológicos de la Cuenca del río Ocosito	62
Cuadro 31 Criterios de clasificación para la clase textural de suelos según el NRCS	67
Cuadro 32 Clasificación de los usos de la tierra según la clasificación de NRCS y	
software ArSwat y número de curva correspondiente al tipo de suelo	77
Cuadro 33 Perfil histórico de la comunidad de Villa Flores, Coatepeque	83
Cuadro 34 Perfil histórico de la comunidad de Los Encuentros, Coatepeque	84
Cuadro 35 Perfil histórico de la comunidad de Valle Lirio, Retalhuleu	85
Cuadro 36 Perfil histórico de la comunidad de El Pomal, Coatepeque	86
Cuadro 37 Inversión para el área de una manzana	87
Cuadro 38 Ganancias obtenidas en una cosecha para el área de una manzana	88
Cuadro 39 Área (Km²) susceptible a inundaciones en cuenca Ocosito	92
Cuadro 40A Resultados de caudales del Software Hec-HMS1	33

ÍNDICE DE FIGURAS

	agina
Figura 1 Metodología para la caracterización de la cuenca del río Ocosito	11
Figura 2 Metodología para determinar la precipitación en diferentes tiempos de	
retorno	13
Figura 3 Metodología para la generación del mapa del número de curva	13
Figura 4 Metodología para la modelación hidrológica	14
Figura 5 Metodología para la modelación hidráulica	15
Figura 6. Mapa base de la cuenca del río Ocosito	16
Figura 7. Departamentos de la cuenca del río Ocosito	18
Figura 8. Población de la cuenca del río Ocosito	20
Figura 9. Municipios de la cuenca del río Ocosito	20
Figura 10. Porcentaje de cobertura municipal dentro la cuenca Ocosito	22
Figura 11. Población en la cuenca del río Ocosito	23
Figura 12. Distribución porcentual de la población urbana y rural, según	
departamentos	24
Figura 13. Distribución porcentual de la población indígena y no indígena, según	
municipios	25
Figura 14. Porcentaje de escolaridad de la población objetivo	27
Figura 15. Índice de Gini en cuenca del río Ocosito	31
Figura 16. Climadiagrama Estación Coatepeque, Quetzaltenango	39
Figura 17. Climadiagrama Estación El Palmar, Quetzaltenango	40
Figura 18. Climadiagrama Estación San Martín, Quetzaltenango	41
Figura 19. Climadiagrama Estación Suchiate, México	42
Figura 20 Diagrama de Gumbel para Coatepeque	43
Figura 21 Diagrama de Gumbel para El Palmar	43
Figura 22 Diagrama de Gumbel para San Martin Sacatepéquez	44
Figura 23 Diagrama de Gumbel para Suchiate	44
Figura 24 Diagrama de Gumbel para Ignacio López Rayón	45

Figura 25 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de	
2 años	. 46
Figura 26 Pluviograma de Coatepeque, Quetzaltenango para un periodo de retorno	
de 5 años	. 48
Figura 27 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de	!
10 años	. 49
Figura 28 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de	
25 años	. 51
Figura 29 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de	
50 años	. 52
Figura 30 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de	
75 años	. 54
Figura 31 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de	
100 años	. 55
Figura 32 Zonas de Vida de la cuenca del río Ocosito	. 59
Figura 33 Gráfica del orden de Corrientes vrs logaritmo del número de corrientes	. 61
Figura 34 Fisiografía de la cuenca del río Ocosito	. 62
Figura 35 Taxonomía de suelos de la cuenca del río Ocosito	. 63
Figura 36 Capacidad de uso de la tierra según la metodología del INAB de la cuenca	ì
del río Ocosito	. 64
Figura 37 Porcentaje de capacidad de uso de la tierra de la Cuenca del río Ocosito	. 65
Figura 38 Clase textural del suelo de la cuenca del río Ocosito	. 66
Figura 39 Uso actual de la tierra de la Cuenca del río Ocosito, 2016	. 68
Figura 40 Porcentaje de cobertura de los usos de la tierra	. 69
Figura 41 Subcuenca Ocosito	. 75
Figura 42 Distribución del número de curva de cuenca del río Ocosito	. 76
Figura 43 Modelo base de la cuenca del río Ocosito según HEC-HMS	. 78
Figura 44 Resumen de resultados de modelación hidrológica	. 79
Figura 45 Modelo hidráulico en uno de los tramos del río Ocosito en HEC-RAS	. 80
Figura 46 Proyección de las zonas susceptibles a inundaciones en primer tramo	
según modelación hidráulica en cuenca del río Ocosito	. 81

Figura 47 Proyección de las zonas susceptibles a inundaciones en segundo tramo	
según modelación hidráulica en cuenca del río Ocosito	82
Figura 48 Grafica de estimación económica de los principales cultivos	88
Figura 49 Percepción comunitaria de zonas susceptibles a inundaciones en la parte)
baja de la cuenca del río Ocosito	89
Figura 50 Proyección de zonas susceptibles a inundaciones según modelación y	
percepción comunitaria	90
Figura 51 Categoría de susceptibilidad a inundaciones de la cuenca del río Ocosito	91
Figura 52A y Figura 53A. Reunión con personas de comunidades y de la	
agroindustria bananera del área de estudio	. 100
Figura 55A Punto de intersección del río Nil y Ocosito	. 100
Figura 54A Río Ocosito en época seca, a las cercanías del caserío El Pomal	. 100
Figura 58A Represa en cercanías de plantaciones de Palma Africana, Retalhuleu	. 101
Figura 59A Represa en Parque Recreativo Ocosito, Retalhuleu	. 101
Figura 56A y Figura 57A. Río Ocosito en las cercanías de Aldea Las Cruces y a	
través de plantaciones de Palma Africana, Retalhuleu	. 101
Figura 62A Taller "Gestión de Riesgo de Desastres" a comunidades del área de	
Ocosito.	. 102
Figura 63A Actividad de percepción comunitaria ante el riesgo a inundaciones	. 102
Figura 60A Reconocimiento de la parte alta Ocosito, cerca de las faldas del Volcán	i
7 Orejas, Quetzaltenango	. 102
Figura 61A Vegetación en las faldas del volcán 7 Orejas, Quetzaltenango	. 102
Figura 64A Visita a personas claves para la recopilación de antecedentes de	
comunidades de Ocosito.	. 103
Figura 65A Elaboración de mapeo comunitario con diferentes actores	. 103
Figura 66A Base de datos de pre procesamiento de HEC-GeoHMS	. 104
Figura 67A Completar vacíos de HEC-GeoHMS	. 104
Figura 68A Dirección de flujo de HEC-GeoHMS	. 105
Figura 69A Acumulación de flujos de HEC-GeoHMS	. 105
Figura 70A Definición de corrientes en HEC-GeoHMS	. 106
Figura 71A Delimitación de cuencas de HEC-GeoHMS	. 106

Figura 72A Procesamiento de los polígonos de captación de HEC-GeoHMS	107
Figura 73A Procesamiento de líneas de drenaje de HEC-GeoHMS	107
Figura 74A Recopilación de los procesamientos de HEC-GeoHMS	108
Figura 75A Base de datos de proyecto de HEC-GeoHMS	108
Figura 76A Comenzar un nuevo proyecto de HEC-GeoHMS	109
Figura 77A Definir un nuevo proyecto en HEC-GeoHMS	109
Figura 78A Agregar puntos del proyecto	110
Figura 79A Puntos de Proyecto para Ocosito en HEC-GeoHMS	110
Figura 80A Generar proyecto en HEC-GeoHMS	111
Figura 81A Campos para generación de proyecto en HEC-GeoHMS	111
Figura 82A Base de dato de características en HEC-GeoHMS	112
Figura 83A Longitud del río de HEC-GeoHMS	112
Figura 84A Pendiente del río de HEC-GeoHMS	113
Figura 85A Recorrido de corriente de HEC-GeoHMS	113
Figura 86A Centro de la cuenca de HEC-GeoHMS	114
Figura 87A Centro de recorrido de corriente de HEC-GeoHMS	114
Figura 88A Base de datos de parámetros de HEC-GeoHMS	115
Figura 89A Selección de los procesos de HMS de HEC-GeoHMS	115
Figura 90A Asignación de nombre al río de HEC-GeoHMS	116
Figura 91A Asignación de nombre a cuenca	116
Figura 92A Generación del número de curva de HEC-GeoHMS	117
Figura 93A Parametros de las subcuencas de HEC-GeoHMS	117
Figura 94A Base de datos de HMS en HEC-GeoHMS	118
Figura 95A Mapa en unidades de HMS de HEC-GeoHMS	118
Figura 96A Revisión de datos de HEC-GeoHMS	119
Figura 97A Esquema de HMS de HEC-GeoHMS	119
Figura 98A Preparar los datos para exporter el modelo de HEC-GeoHMS	120
Figura 99A Base de una capa de HEC-GeoHMS	120
Figura 100A Archivo del modelo de cuenca de HEC-GeoHMS	121
Figura 101A Crear el proyecto de HEC-HMS de HEC-GeoHMS	121
Figura 102A Modelo de la cuenca de HEC-HMS	122

Figura 103A Modelo meteorológico de HEC-HMS	. 122
Figura 104A Datos de las series de tiempo de HEC-HMS	. 123
Figura 105A Tablas de series de tiempo de estaciones meteorológicas de HEC-HM	S123
Figura 106A Ventana de tiempos de series de tiempo de estaciones de HEC-HMS.	. 124
Figura 107A Tabla de las estaciones meteorológicas de HEC-HMS	. 125
Figura 108A Ventana del modelo meteorológico de HEC-HMS	. 125
Figura 109A Modelo meteorológico de HEC-HMS	. 126
Figura 110A Cueca del modelo meteorológico de HEC-HMS	. 126
Figura 111A Selección de las estaciones a utilizar de HEC-HMS	. 127
Figura 112A Precipitación de estaciones meteorológicas de HEC-HMS	. 127
Figura 113A Modificación de componentes de subcuencas de HEC-HMS	. 128
Figura 114A Método de ruta del modelo de cuenca de HEC-HMS	
Figura 115A Ventana de ruta de HEC-HMS	. 129
Figura 116A Ventana de especificaciones de control de HEC-HMS	. 129
Figura 117A Realizar simulación de HEC-HMS	. 130
Figura 118A Simulaciones del proyecto de HEC-HMS	. 130
Figura 119A Simulaciones del modelo de HEC-HMS	
Figura 120A Mapa de polígonos de Thiessen	. 132

1. INTRODUCCIÓN

Las inundaciones son la segunda amenaza hidrometeorológica con mayor impacto en Guatemala, afectando con mayor recurrencia la Costa Sur del país (Guerra, Salpec, Fuentes, & Alfaro, 2016). En esta zona se identifican dos tipos de inundaciones, los que son influenciadas por la escorrentía de las cuencas que drenan la cadena volcánica, y las que ocurre por eventos como tormentas tropicales, lluvias recurrentes (Red Interamericana de Mitigación de Desastres, 2016). Siendo un fenómeno natural este de igual manera puede ser inducido por el ser humano, realizando prácticas inadecuadas en la tierra. El impacto negativo que genera en la región, ha llegado a provocar pérdidas humanas, daños económicos a la infraestructura y medios de producción agrícola, alterando de manera significativa las condiciones de vida (Guerra et al., 2016).

El incremento en la vulnerabilidad local, hace que eventos de menor frecuencia, tengan efectos devastadores, similares a los provocados por uno de mayor intensidad. Este es el caso de la población que se ubica en la parte baja de la cuenca del río Ocosito, quienes sufren con la intensidad de las lluvias tanto a nivel local como regional, las cuales generan inundaciones en la zona.

La presente investigación identifica las áreas susceptibles de inundaciones a través de dos diferentes metodologías; una modelación hidráulica que evalúa el comportamiento del río, utilizando datos de caudal de una modelación hidrológica y la percepción de las comunidades en experiencia con las inundaciones. El realizar dos metodologías permite tener diferentes panoramas de la situación en la que se desarrollan las inundaciones, la modelación determina inundaciones de tipo fluvial y la percepción comunitaria logra identificar inundaciones fluviales como pluviales. La participación de las personas es fundamental para realizar análisis comparativo de los resultados que genere la modelación, y así validar la importancia de involucrar a las personas en el análisis de las inundaciones.

2. MARCO TEÓRICO

2.1 Marco Conceptual

2.1.1 Fenómenos Naturales

Los fenómenos naturales según (Maskrey, 1993) son todos aquellos eventos originados por la atmosfera y origen geológico tales como huracanes, tormentas, sismos, erupciones volcánicas, inundaciones y demás; estos pueden originar desastres, si estos se presentan en áreas con una alta vulnerabilidad y con la intervención del ser humano, en el caso del uso inadecuado de la tierra, falta de un ordenamiento territorial. Los tipos de fenómenos naturales son:

- Geológicos
- Hidrológicos
- Atmosféricos

2.1.2 Fenómenos Hidrometeorológicos

Son los fenómenos de origen climático que serán influenciados por las modificaciones de la atmosfera. (Eslava Morales, Jimenez Espinosa, Salas Salinas, García Jimenez, & Vázquez Conde, 2005) Estos pueden ser clasificados en los siguientes grupos:

- Inundaciones
- Depósito de sedimentos
- Mareas
- Sequias
- Huracanes
- Nevadas
- Heladas

2.1.3 Inundaciones

Es un fenómeno natural el cual cubre de agua zonas o áreas que en condiciones normales se encuentran secas. Las inundaciones se producen por diversos factores ascenso temporal del nivel del río, lago u otro, lluvias recurrentes, excesos de precipitación, fusión de hielos. En cierta medida, las inundaciones pueden ser eventos controlables por el hombre, dependiendo del uso de la tierra y las medidas para la mitigación (Davila, 2011).

2.1.4 Tipos de Inundaciones

Los tipos de inundaciones se definen según el origen de las mismas, estas pueden ser pluviales o fluviales. (CENAPRED, 2009)

Las inundaciones pluviales son a causa de la precipitación, ocurre en suelos con problemas de drenaje, por lo general arcillosos, el exceso de lluvia comienza a acumularse.

Las inundaciones fluviales son a causa del desbordamiento de ríos, ocurre en superficies que se encuentran aledañas a los mismos.

2.1.5 Inundación Repentina

Son las que ocurren dentro de las primeras seis horas de precipitación pluvial intensa, asociado con nubes cúmulos altas, tronadas, ciclones tropicales o paso de frentes de clima frío.

2.1.6 Llanuras de Inundación

Son áreas generalmente cubiertas por depósitos aluviales tipo arenas, que dan como resultado depósitos arcillosos y/o limosos por inundaciones periódicas.(Kingma, Westen, & Vargas, 2003)

2.1.7 Amenaza

Es la exposición de un peligro, fenómenos externos, actividades humanas o condición peligrosa en donde se ejerce poco o ningún control sobre este, que puede causar la muerte, lesiones, daños materiales, perdida de medios de sustento, de servicio, ocasionar un trastorno social y económico, o daños ambientales. Este puede ser caracterizado por su ubicación, intensidad, frecuencia y probabilidad, de manera que se logre determinar las acciones para intervenir y disminuir la posibilidad de ocurrencia de un riesgo (Estrategia Internacional para la Reducción de Desastres de las Nacione Unidas (UNISDR), 2009).

2.1.8 Vulnerabilidad

Se comprende por el grado de susceptibilidad que presente la sociedad, el ambiente, la infraestructura y demás, dependiendo de la capacidad de absorber la gravedad de la situación y la recuperación de los daños sufridos. (Estrategia Internacional para la Reducción de Desastres de las Nacione Unidas (UNISDR), 2009).

2.1.9 Riesgo

Es la combinación de la probabilidad de que ocurra un evento y las consecuencias que provoca un impacto negativo, afectando a la sociedad, infraestructura o medio ambiente(Estrategia Internacional para la Reducción de Desastres de las Nacione Unidas (UNISDR), 2009). El escenario del riesgo se presenta un fenómeno que pueda ocasionar daño o peligro y un factor vulnerable o susceptible que se encuentra expuesto, ocasionando pérdidas potenciales a una sociedad, según las condiciones sociales, económicas, culturales, técnicas y ambientales, siendo algunas cuantificables (Estrategia Internacional para la Reducción de Desastres de las Nacione Unidas (UNISDR), 2009).

2.1.10 Desastre

Daños sociales, económicos y ambientales causados por un fenómeno de origen natural o provocado, originado por el resultado de una correlación de amenaza y vulnerabilidad, interrumpiendo el desarrollo de una sociedad (The United Nations & Bank, 2010). En él se incluyen la pérdida de vidas humanas, enfermedades, lesiones y efectos negativos en el bienestar físico, mental y social humano, como la destrucción de bienes, servicios y degradación ambiental, siendo las condiciones en las que se nombra una situación en estado de emergencia.

2.1.11 Modelación Hidrológica

Una modelación hidrológica consta de una simulación hidrológica de la cuenca para conocer el comportamiento físico del agua del cauce principal y/o corrientes, logrando determinar el caudal partiendo de datos de precipitación, por lo que es de importancia

contar con la base de datos de las estaciones meteorológicas, contando con la mayor información posible para resultados de mejor precisión (Gil Villalba, 2012a).

2.1.12 Sistema de Modelación Hidrológica

El Sistema de Modelación Hidrológica conocido por sus siglas en ingles HEC-HMS es un software del Centro de Ingeniería Hidrológico (*Hydrologic Engineering Center*), de referencia para el Cuerpo de Ingenieros del Ejército de Estados Unidos de América (*US Army Corps of Engineers*) enfocado en la hidrología, hidráulica y demás temas relacionados (Hydrologic Engineering Center, n.d.-a).

2.1.13 Modelación Hidráulica

La modelación hidráulica evalúa el comportamiento de un flujo de agua, logrando proyectar las áreas susceptibles a inundaciones, a partir de una base de datos de caudales en diferentes tiempos de retorno, siendo un análisis precisamente para inundaciones fluviales.

2.1.14 Sistema de Análisis de río

El Centro de Ingeniería Hidrológico (*Hydrologic Engineering Center*) cuenta con un software que recibe el nombre de Sistema de Análisis del río (*River Analysis System*) conocido por sus siglas en inglés como HEC-RAS. Este tipo de software logra realizar una proyección de las áreas vulnerables ante inundaciones, el transporte de sedimentos, calidad del agua y demás (Hydrologic Engineering Center, n.d.-b).

2.1.15 Coeficiente de Simultaneidad (K_A)

Es un coeficiente que corrige la asunción de la distribución espacial de la precipitación es constante. En efecto, mientras mayor sea la superficie de estudio, más desigual será distribución en el territorio (Gil Villalba, 2012c). Este corrige el valor de la precipitación diaria calculado con el ajuste de Gumbel (ACA 2003).

2.1.16 Numero de Curva

Es una metodología desarrollada por el Soil Conservation Service (SCS) de los Estados Unidos, basado en diferentes estudios realizados en cuencas del sur de ese

país, esto como resultado de la dificultad el determinar los parámetros a las perdidas hidrológicas (infiltración, evapotranspiración y retención superficial) de una manera empírica, (Gil Villalba, 2012b), los valores se encuentre de 0 a 100; donde una CN = 0 no tiene escurrimiento y una CN = 100 es una área impermeable y toda la precipitación genera escorrentía. (Havrylenko, Damiano, & Pizarro, 2006)

2.2 Marco Referencial

2.2.1 Estudio de prefactibilidad proyecto de drenaje y control de inundaciones parcelamiento La Blanca, Ocós, San Marcos

Durante los años de 1973, 1974 y 1975 se construyó la Unidad de Riego "La Blanca" la cual tenía una área bruta de 1800 ha. El área neta potencialmente regable era de 1530 ha. El proyecto empezó funciones en el año de 1975. Para 1995 se regaba el 60% del área potencialmente regable con un caudal de 1.8 l/s. El estudio del proyecto de riego hizo mención de la necesidad de un drenaje, el cual no se realizó una construcción de un sistema como tal, lo cual ha repercutido a frecuentes inundaciones a causa del exceso de agua en la época lluviosa. Agregando a que ocasionan el desbordamiento del río Pacayá, el cual se unen al Ocosito. Esto afecta a la agricultura, principalmente a cultivos que la mayoría de las personas trabaja y presentan un alto riesgo, siendo el arroz, maíz y ajonjolí. Las estimaciones de área afectada por las inundaciones son de 4000 ha (Ministerio de Agricultura Ganadería y Alimentación, 1995).

Además de afectar uno de los principales medios de subsistencia, la salud de las personas se encuentra en alto riesgo, ocasionando enfermedades como el paludismo, dengue y diarreas, la cuales son muy comunes, el cólera ha sido la que ha ocasionado mayor impacto en la sociedad. El cólera presentaba rebrotes a causa de las inundaciones (Ministerio de Agricultura Ganadería y Alimentación, 1995).

2.2.2 Estudio de drenaje superficial en la unidad de riego La Blanca, San Marcos

Basado en el estudio de prefactibilidad del proyecto de drenaje y control de las inundaciones de 1994, se considera el diseño del canal principal, canales secundarios, embalse y puentes con el propósito de mejorar las condiciones socioeconómicas de la población. Este estudio era proyectado con la finalidad de disminuir las pérdidas

agrícolas que se reportaban por las inundaciones (Ministerio de Agricultura Ganadería y Alimentación, 2000).

De 1994 para el 2000 las condiciones del lugar habían sufrido cambios, un aumento poblacional, por lo que se contaban con más viviendas y parcelas, realizando modificaciones en el diseño del parcelamiento de La Blanca, haciendo la implementación del proyecto de drenaje un aspecto de importancia (Ministerio de Agricultura Ganadería y Alimentación, 2000).

2.2.3 Estudio técnico de base sobre control y monitoreo de crecientes e inundaciones en el área de influencia de la cuenca media y baja, zanjón Pacayá, Ocós, San Marcos

"La gestión integrada de los recursos hídricos es Un proceso destinado a promover la gestión y desarrollo coordinado de los recursos hídricos, los suelos y los recursos relacionados, con vista a maximizar el bienestar económico y social de las poblaciones del área de influencia del río Pacayá de manera equitativa sin comprometer la sostenibilidad de los ecosistemas vitales; logrando obtener múltiples beneficios con una única intervención." (Comisión Nacional de Coordinación para el Recurso agua (CONAGUA), 2005)

"La planificación del desarrollo integrado de los recursos hídricos del área del Zanjón Pacayá debe considerarse el ciclo hidrológico de la cuenca del Ocosito en su conjunto, sin establecer diferencias entre épocas de inundación y épocas de sequía." (Comisión Nacional de Coordinación para el Recurso agua (CONAGUA), 2005)

La gestión integrada de crecientes e inundaciones del área del Zanjón Pacayá tendrá como finalidad la adopción de medidas integradas apropiadas para la gestión de las crecidas y de tal manera prevenir inundaciones, esto solo siendo posible el establecer una relación entre sectores, comunidades, gobiernos, iniciativa privada y Estado, considerado por ser un interés común para solucionar el problema de las inundaciones (Comisión Nacional de Coordinación para el Recurso agua -CONAGUA-, 2005).

2.2.4 Evaluación preliminar de los ríos Ocosito y Pacayá en el área cercana a la desembocadura

Se cuenta con una ausencia de información de los daños que han causado las inundaciones a causa de los cambio morfológicos que han sufrido los ríos Ocosito y Pacayá; como objetivo primordial es el describir de una manera cualitativa el fenómeno natural que representa la dinámica de los ríos, a través de dos bocabarras; el registro de los daños ocasionados por inundaciones se tiene a partir de la Tormenta Tropical Agatha (Galindo, Rodas, Melendez, & Argueta, 2010).

Se considera que la problemática deriva de las intensas lluvias que se han registrado en los últimos años, agregando el transporte de sedimentos hace que los cauces de zanjones y ríos se colmaten y dificulten el drenaje. El crecimiento población influye de gran manera, las personas se instalan sin una evaluación previa en lugares si son adecuados; las actividades de la población, principalmente actividades agropecuarias propiciando la construcción de canales para riego o drenaje (Galindo et al., 2010).

2.2.5 Estudios hidrológicos de los ríos Achiguate, Coyolate, María Linda y Los Esclavos

En los últimos 15 años, las inundaciones a causa de episodios extremos de precipitación han causado grandes estragos en Guatemala, se han registrado 4 episodios con especial incidencia a nivel económico, social y ambiental: Mitch, Stan, Agatha y 12E. Estos 4 episodios suman 1,072 fallecidos, 5 millones de damnificados y pérdidas valoradas en 25,463 millones de Quetzales (Gil Villalba, 2016).

2.2.6 Estudio de los procesos hidrológicos de la cuenca del río Diguillín

La modelación hidrológica predice el caudal y facilita el análisis de una cuenca y el comportamiento que este presenta, por tanto se pueden realizan predicciones en diferentes escenarios. Estos análisis permiten un mejor manejo de las cuencas, sabiendo que el recurso hídrico es de importancia y vital para el ser humano, se requiere un uso adecuado y racional. En el valle central del centro del sur de Chile presenta una alta demanda del recurso hídrico, principalmente por parte de las actividades económicas, mencionando la agricultura siendo una de las principales actividades económicas de esa zona, la cual requiere asegurar la disponibilidad de recursos con una planificación y gestión adecuada. El estudio implementa un modelo

hidrológico sobre la cuenca del río Diguillín, para conocer los procesos hidrológicos que predominan en la generación de escorrentía y almacenamiento, y disponer de herramientas que permitan estimar condiciones futuras (Zúñiga, Muñoz, & Arumí, 2012).

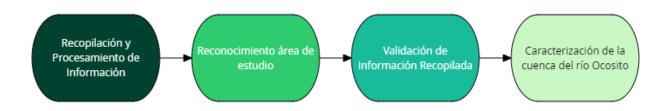
2.2.7 Estudios hidrológicos e hidráulicos para el ordenamiento territorial de una cuenca

Con la finalidad de obtener parámetros de diseño para obras de sistematización de los cauces, como también para la planificación del uso del suelo, se desarrollaron los estudios hidrológicos pertinentes que consistieron, primeramente en la determinación de variables hidrometeorológicas y fisiográficas de las cuencas, las que luego fueron utilizadas como datos de entrada a los modelos matemáticos de simulación hidrológica. Los caudales así obtenidos, asociados con probabilidad de ocurrencia, fueron datos de entrada al modelo matemático de simulación de curvas de superficie libre en régimen permanente para delimitar áreas de inundación (Maza et al., 1995).

3. OBJETIVOS

3.1 Objetivo General

Determinar las áreas susceptibles a inundaciones de la parte baja de la cuenca del río Ocosito mediante modelación y percepción comunitaria.


3.2 Objetivos Específicos

- Elaborar una caracterización socioeconómica y biofísica de la cuenca del río Ocosito para la identificación de los aspectos que hacen que sea una zona propensa a inundaciones.
- 2) Generar una modelación hidráulica para análisis del comportamiento del río Ocosito y proyectar las áreas inundables, utilizando caudales en diferentes tiempos de retorno generados por una modelación hidrológica.
- 3) Mapear las áreas susceptibles a inundaciones en la parte baja de la cuenca del río Ocosito, a través de la percepción comunitaria y determinar una estimación de las pérdidas económicas de los principales cultivos provocado por las inundaciones.

4. METODOLOGÍA

4.1 Caracterización

Se realizó una recopilación de información de la cuenca, se carece de una base de datos específica para esta área, lo cual dificulta el análisis para dicha investigación, así como determinar el grado de vulnerabilidad de los elementos afectados por las inundaciones. Por lo que se realizó una recopilación de información de aspectos socioeconómicos y biofísicos del área de estudio (figura 1).

Fuente: elaboración propia, 2016.

Figura 1 Metodología para la caracterización de la cuenca del río Ocosito.

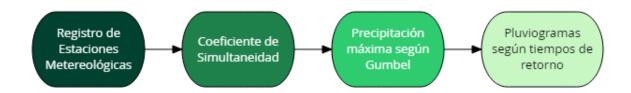
Recopilación y Procesamiento de Información

Se recopilo toda información y datos de aspectos socioeconómicos y biofísicos a nivel municipal, para una precisión de información. Se elaboraron mapas temáticos para un mejor análisis y comprensión de los aspectos del área. Las fuentes utilizadas fueron las siguientes:

- Caracterización a nivel municipal
- > Planes de Desarrollo Municipales
- Datos del Instituto Nacional de Estadística (INE)
- Registro de Puestos y Centros de Salud
- Datos del INSIVUMEH
- Datos de ANACAFÉ
- Datos de CONAGUA
- Documentación del IARNA
- Documentos del MAGA
- Documentos e informes en páginas de internet

Reconocimiento área de estudio

Se realizó un recorrido en la zona de estudio, con la finalidad de corroborar la información primaria recaba y dimensionar el área de intervención, se elaboró un mapa preliminar para la elaboración de los mapas temáticos de la investigación. Así mismo se estableció las coordinaciones con actores claves, líderes comunitarios y miembros socios de –APIB-, para la participación en los talleres que se realizaron para el mapeo comunitario.


Validación de información recopilada

La información recopilada se corroboro en el reconocimiento del área de estudio, lo que permitió realizar los cambios pertinentes y obtener una caracterización del área de estudio actualizada.

Para la realización de la caracterización se utilizaron herramientas como ArcGIS ®, para mapas temáticos y Office (Word, Excel).

4.2 Modelaciones

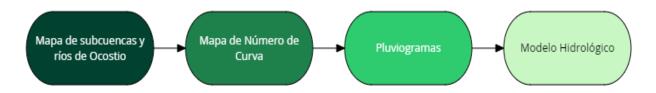
Para la modelación hidrológica, se realizó una recopilación de datos de precipitación de las estaciones meteorológicas dentro y cerca de la cuenca de estudio. Para determinar el volumen de precipitación en tiempos de retorno de 2, 5, 10, 25, 50, 75 y 100 años, se empleó el método de Gumbel, en función de las precipitaciones diarias máximas anuales y el número de años de registradas. La precipitación diaria se corrigió con el coeficiente de simultaneidad (K_A); se realizaron pluviogramas para cada estación meteorológica y tiempo de retorno para conocer la distribución de lluvia cada 60 minutos durante 24 horas. Para la asignación de los datos de los pluviogramas a cada uno de las áreas de subcuenca, se realizaron polígonos de Thiessen, para conocer el porcentaje de distribución que correspondía a cada subcuenca que genera el HEC-GeoHMS a través de ArcGIS ®. En la figura 2, se presenta el proceso metodológico realizado.

Fuente: elaboración propia, 2016.

Figura 2 Metodología para determinar la precipitación en diferentes tiempos de retorno

Para realizar los cálculos que determinen el caudal a través de datos de precipitación se debe tomar ciertas consideraciones el determinar la distribución del agua se encuentra en la superficie, refiriéndose a la cantidad de agua que se convierte en infiltración, evapotranspiración y retención superficial (Gil Villalba, 2012a).

Para la determinación de escorrentía por el método de número de curva se realiza en función del uso de la tierra, tipo de suelo (clase textural) y topografía del área, integrando los parámetros de infiltración, evapotranspiración y retención superficial, el Servicio de Conservación de los Recursos Naturales conocido por sus siglas en ingles (NRCS) del Departamento de Agricultura de Estados Unidos público una tabla de valores del número de curva en función de los parámetros. Para este caso se utilizó los mapas de uso actual de tierra, clase textural y DEM15 del Ministerio de Agricultura, Ganadería y Alimentación (MAGA). Luego de determinado el número de curva del área de estudio, el software de modelación puede estimar el caudal generado a partir de una determinada precipitación (Gil Villalba, 2011).



Fuente: elaboración propia, 2016.

Figura 3 Metodología para la generación del mapa del número de curva

Se utilizó HEC-GeoHMS para generar el área de influencia del río Ocosito, a través del ArcGIS ®, siendo una extensión del software de HEC-HMS, el cual identificó las diferentes subcuencas y corrientes de agua pertenecientes al cauce principal.

En la sección de anexos se encuentra el procedimiento de la modelación hidrológica.

Fuente: elaboración propia, 2016.

Figura 4 Metodología para la modelación hidrológica

Para la modelación hidráulica se utilizaron datos obtenidos de la modelación hidrológica y de la metodología de la crecida índice del INSIVUMEH, los cuales el programa HEC-RAS se encarga de realizar una simulación de las áreas que están en riesgo a inundaciones (Pérez Sierra, 2012).

La crecida índice para un determinado tiempo de retorno, se determina con la siguiente ecuación:

$$OMM = BxA^n$$

Donde:

QMM = Estimación de crecida

B v n = coeficientes para las crecidas según la región

A = área de la cuenca

El INSIVUMEH estableció los coeficientes a cada región según las características de las cuencas, siendo valores constantes, para este caso se utilizaron los tres métodos planteado siendo, Gumbel, Envolvente y Log-Normal.

Para la proyección de las zonas susceptibles con el programa de HEC-RAS se seleccionó el tramo del río a evaluar, se definió el área a proyectar trazando líneas perpendiculares al río, se debe contar con el DEM del tramo a evaluar para que el

programa reconozca el área. Por último asignaron los valores de caudales de los tiempos de retorno de 2, 5, 10, 25, 50, 75 y 100 que correspondían al área donde se ubicaba el tramo.

Fuente: elaboración propia, 2016.

Figura 5 Metodología para la modelación hidráulica

4.3 Percepción Comunitaria

Se realizaron talleres y entrevistas a nivel comunitario y a miembros socios de la Asociación de Productores Independientes de Banano –APIB-, con el fin de conocer la memoria histórica, la forma en han sido afectados por las inundaciones y la manera en la que han confrontado la situación ante las soluciones, como las soluciones que han planteado. A partir de esto se realizó un perfil histórico de las comunidades intervenidas. La agricultura es la principal productiva, por lo que se identificó cuáles eran los principales cultivos y una estimación de cuanto es el monto de inversión y la perdida que obtiene al enfrentarse ante una inundación.

Para efectos de la investigación se trabajaron con líderes de las diferentes comunidades con mayor recurrencia a inundaciones, donde se aplicaron diferentes metodologías en temas de gestión de riesgo para la recopilación de información.

- TALLER: Gestión de Riesgos a Desastres, Análisis Histórico (comunidades de estudio) y Mapeo.
- RECORRIDO: Visitas a cada una comunidad de estudio

5. RESULTADOS Y DISCUSIÓN

5.1 Caracterización de la cuenca del río Ocosito

La delimitación del área de estudio cumple con la funcionalidad como mapa base como se logra observar en la figura 6, el cual se considera la guía para la elaboración de los demás mapas temáticos que respectan al estudio y facilite el trabajo. La cuenca del río Ocosito cuenta con un área de 1933 km², se encuentra colindando con las cuencas El Naranjo al oeste y Samalá al este. La cuenca queda comprendida entre los paralelos 14°13' y 14°50' latitud y meridianos 91°35' y 92°12' longitud (Galindo et al., 2010).

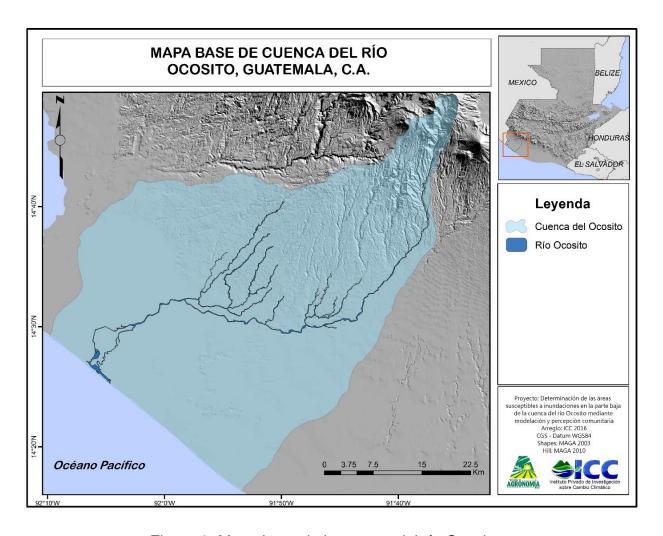


Figura 6. Mapa base de la cuenca del río Ocosito

5.1.1 Características socioeconómicas

5.1.1.1 División política

La cuenca del río Ocosito se encuentra ubicada en los departamentos de Retalhuleu, Quetzaltenango y San Marcos, la superficie de la cuenca se encuentra específicamente en los municipios descritos en el cuadro 1 y mostrados en la figura 7.

Cuadro 1. División administrativa de la cuenca Ocosito

Departamento	Municipio
Retalhuleu	Retalhuleu
_	Champerico
_	El Asintal
_	Nuevo San Carlos
_	San Sebastian
_	San Felipe
Quetzaltenango	San Mateo
	Concepción Chiquirichapa
	San Martín Sacatepequez
	Colomba
	Coatepeque
	Flores Costa Cuca
	Genova
	El Palmar
San Marcos	Ocos

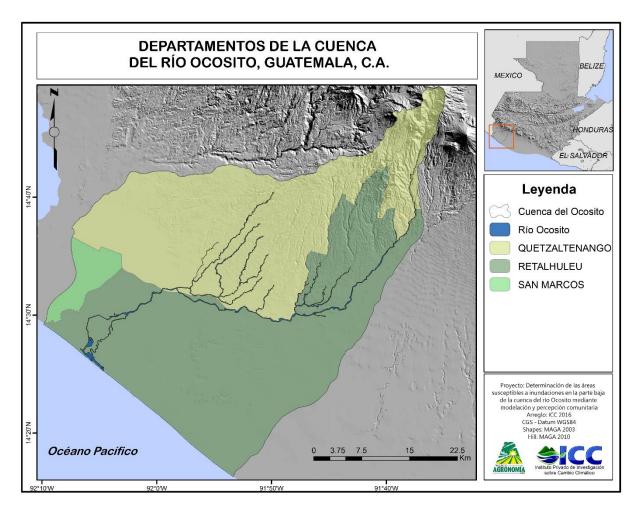


Figura 7. Departamentos de la cuenca del río Ocosito

A.1 Población total

Se realizó una proyección de la población para el año 2016 en la cual se utilizó el siguiente modelo matemático denominado Malthus:

$$P = P_o * e^{kt}$$

Cuadro 2. Población de la cuenca Ocosito

Departamento	Municipio	Población 2002	Población Proyectada 2016
	Retalhuleu	59607	64190
	Champerico	23252	25040
	El Asintal	25893	27884
Retalhuleu	Nuevo San Carlos	27095	29178
	San Sebastián	8443	9092
	San Felipe	22	24
	San Mateo	0	0
	Concepción Chiquirichapa	0	0
	San Martín Sacatepéquez	1709	1840
Quetzaltenango	Colomba	25869	27858
	Coatepeque	87651	94391
	Flores Costa Cuca	20208	21762
	Génova	30385	32721
	El Palmar	5095	5487
San Marcos	Ocós	9899	10660

Se realizó una proyección para el 2016 haciendo uso del censo 2002 del Instituto Nacional de Estadistica (INE), en el cual solo incluye el número de personas que se encuentran dentro del área de estudio, como se demuestra en la figura 8.

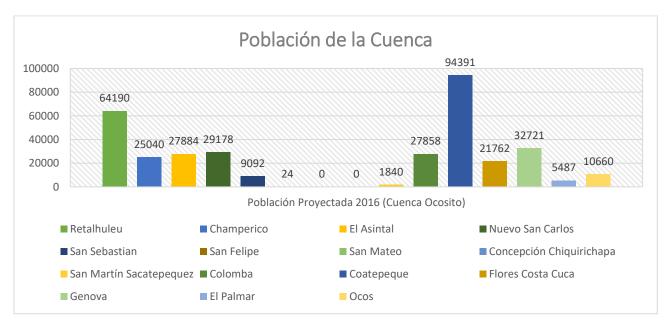


Figura 8. Población de la cuenca del río Ocosito

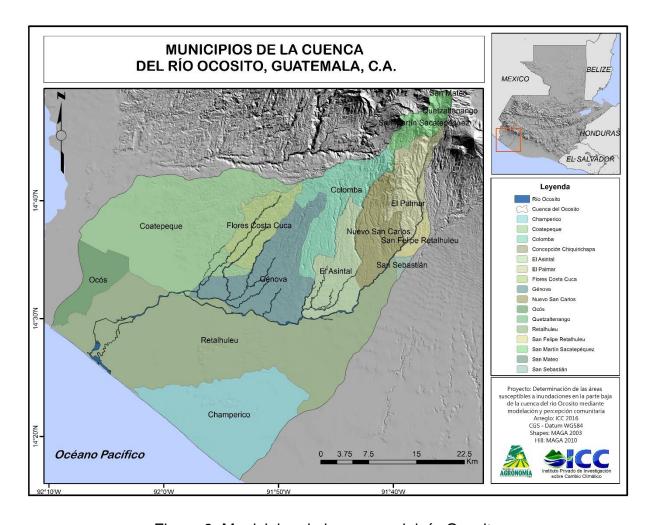


Figura 9. Municipios de la cuenca del río Ocosito

En el mapa, se observa que los municipios San Mateo y Concepción Chiquirichapa, tienen menor cobertura en la cuenca, que el resto; por lo que no se encuentra población dentro del área de estos dos municipios.

En el cuadro 3 se encuentra descrito el área porcentual de cada uno de los municipios dentro la cuenca Ocosito.

Cuadro 3. Porcentaje de la cobertura municipal, por municipio, en la cuenca Ocosito.

Departamento	Municipio	Área (Porcentaje %)
	Retalhuleu	8.1547
_	Champerico	8.5166
_	El Asintal	11.3449
Retalhuleu	Nuevo San Carlos	11.3449
	San Sebastián	3.1766
	San Felipe	4.7842
	San Mateo	0.1645
_	Concepción Chiquirichapa	0.1566
Quetzaltenango	San Martín Sacatepéquez	3.7234
	Colomba	6.1229
	Coatepeque	10.0550
	Flores Costa Cuca	11.3449
	Génova	11.3449
	El Palmar	4.8409
San Marcos	Ocós	4.9248

Los municipios de El Asintal, Nuevo San Carlos, Coatepeque, Flores Costa Cuca y Génova presentan una mayor cobertura representando el 50 % de área de la cuenca.

En la figura 10, se presenta una gráfica que muestra la distribución porcentual de la cobertura municipal dentro de la cuenca Ocosito.

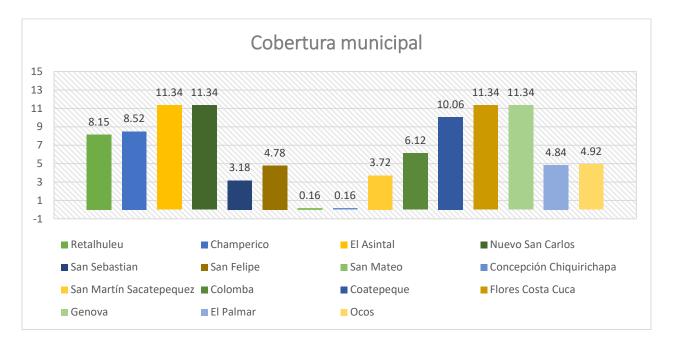


Figura 10. Porcentaje de cobertura municipal dentro la cuenca Ocosito

El Asintal, Nuevo San Carlos, Flores Costa Cuca y Génova presentan una cobertura total del municipio, representando un dominio de cobertura para el área de estudio.

La población puede ser categorizada en aldea, caserío, ciudad, colonia, finca, granja, hacienda, pueblo y otras. En la figura 11, se observa la ubicación de las diferentes categorías que cuenta el área de estudio.

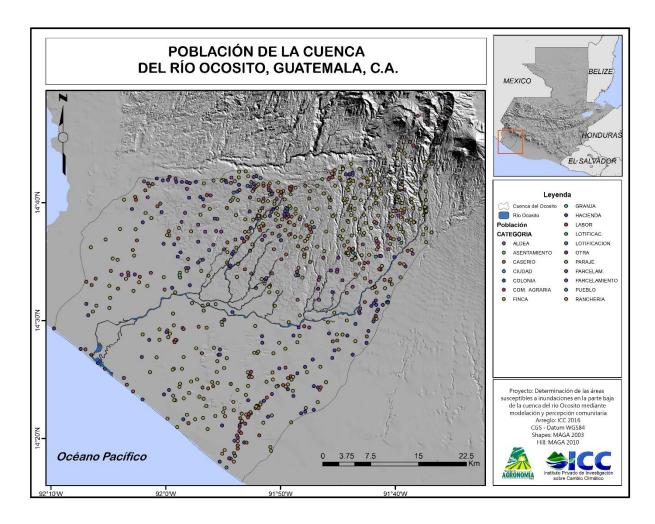


Figura 11. Población en la cuenca del río Ocosito.

El mayor número de habitantes se encuentra concentrada en la parte media y alta de la cuenca como se logra apreciar en la figura anterior. En la parte baja de la cuenca, los habitantes se encuentran dispersos logrando apreciar una menor concentración. Considerando una distribución aleatoria de la población, es importante recalcar que en Guatemala se tienen problemas respecto al tema del ordenamiento territorial, visible en el área de estudio.

B.2 Población urbana y rural

Las categorías ciudades, pueblos (cabeceras departamentales y municipales), colonias o condominios y asentamientos son considerados como área urbana mientras que las aldeas, caseríos, rancheríos, fincas entre otras se consideran como área rural. A nivel cuenca se identifica que el 44.77% representa el área urbana y el 55.23% corresponde al área rural como se demuestra en figura 12.

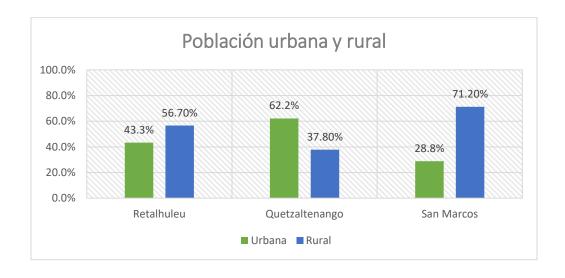


Figura 12. Distribución porcentual de la población urbana y rural, según departamentos.

Según el (Instituo Nacional de Estadistica (INE), 2002) y Planes de Desarrollo Municipales, los departamentos de Retalhuleu y San Marcos cuentan con mayor población en el área rural. La población del departamento de Quetzaltenango se concentra en el área urbana, superando el 60% de los habitantes.

C.3 Población por grupo étnico

La población del área de estudio se ve caracterizada en la diversidad étnica, contando con diferentes grupos, en donde se encuentran el Mam, K'iche, Kaqchiquel, Q'anjobal, lixl, Chuj y ladinos. En el área, las personas indígenas representan un 28.86% y las no indígenas, un 71.14% (figura 13).

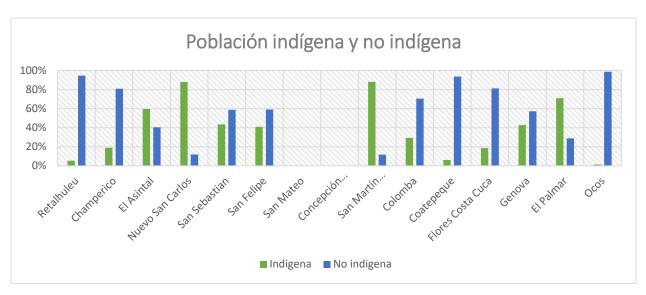


Figura 13. Distribución porcentual de la población indígena y no indígena, según municipios.

El Asintal, Nuevo San Carlos, San Martín Sacatepéquez y El Palmar son municipios que se caracterizan por no tener una dominancia de grupos mestizos al resto de los municipios, presentando una estabilidad cultural, étnica y lingüística, demostrando originalidad e identidades que los caracteriza. Según (Trejo Jenner, 2011) hace mención en donde la (Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO), n.d.) Acepta la definición de cultura en donde se interpreta como el conjunto de características distintivas, espirituales, creencias, tradiciones, lenguas, modo de vida, manifestando la originalidad de los grupos.

5.1.1.2 Nivel de ingresos económicos

La población del área de estudio, más del 50% se dedica a la actividad agrícola, algunas personas cuentan con propiedades para realizar esta actividad mientras que otras son empleados de las agroindustrias.

Las personas que son propietarias de terrenos, por lo general, la producción de las plantaciones son destinadas para consumo en los hogares en algunas situaciones son distribuidos a mercados regionales incluso en diferentes partes en el interior del país, esto se presentan cuando cuentan con pequeñas extensiones de tierra, las familias que se encuentran en esta situación presentan un nivel de ingresos por debajo del salario mínimo, al igual que las familias que se encuentran empleadas en las agroindustrias.

Se estima que el salario por jornada laboral se encuentra entre los Q25.00 y Q60.00, lo cual no cubre el valor de la canasta básica para una familia. La dificultad que presentan estas personas, es que son trabajos temporales lo cual no les asegura este ingreso. Las personas que cuentan con amplias extensiones se dedican a plantaciones de productos para exportación, son familias que presentan condiciones más estables económicamente, mejorando la calidad de vida de las personas. No se tiene conocimiento de una cifra exacta de ingresos de las familias que se benefician de las exportaciones.

Los servicios de restaurante y hotel son una fuente de ingresos para la población, siendo una actividad de alta demanda, seguido de actividades pecuarias y artesanales, servicios comunales, sociales y personales e industria manufacturera textil y alimentación representando más del 20% como una fuente de ingreso para las familias, la mayoría de personas que se dedican a estas actividades no logran ingresos superiores al salario mínimo, incluso, no llegan a obtener el salario mínimo.

5.1.1.3 Educación

En el cuadro 4 y figura 14, se presentan los alumnos inscritos en pre-primaria, primaria, básicos y diversificado, a nivel departamental, según el Compendio Estadístico de Educación 2013, elaborado por el Instituto Nacional de Estadística (INE).

Cuadro 4. Número de alumnos inscritos a nivel departamental

Departamento	Pre-primaria	Primaria	Básicos	Diversificado
Retalhuleu	15146	53783	19356	19185
Quetzaltenango	29317	135700	46920	31481
San Marcos	34965	191630	50949	24147

Fuente: INE, 2013.

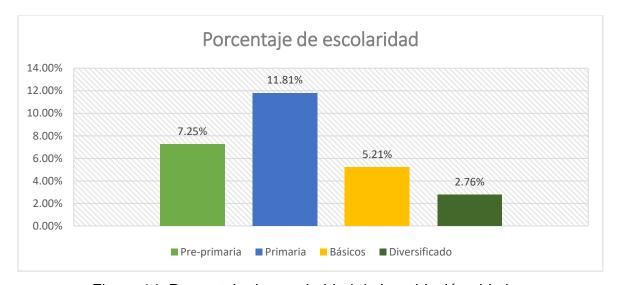


Figura 14. Porcentaje de escolaridad de la población objetivo.

En nivel pre-primaria se encuentran de 0 a 6 años, nivel primaria de 7 a 12 años, básicos de 13 a 15 años y diversificado de 16 a 18 años. Se realizó una estimación del porcentaje de escolaridad para la población de la cuenca, establecido entre la relación de inscritos y la población en los diferentes rangos de edad.

En el año 2013, se identificó que un 27.03% de la población entre los 1 a 18 años se encontraba inscritos en los diferentes ciclos escolares. Los datos de escolaridad en los

últimos años han obtenido cambios, incrementando o disminuyendo, lo que dificulta el realizar una proyección por la inestabilidad de los mismos. Se recomienda realizar un censo del número de personas que encuentran entre los rangos de edades mencionados con anterioridad para la obtención de datos más precisos.

Los municipios que se encuentran en la superficie del área de estudio cuentan con un total de 1455 establecimientos educativos a nivel primario, básico y diversificado, tanto privados como públicos descritos en cuadro 5.

Cuadro 5. Número de establecimientos educativos

Donartamente	Municipio	Prin	naria	Bás	icos	Diversificados	
Departamento	Municipio	Publico	Privado	Publico	Privado	Publico	Privado
	Retalhuleu	83	41	40	107	5	111
	Champerico	42	5	15	8	3	7
- Retalhuleu	El Asintal	39	8	13	8	3	6
Retainuleu	Nuevo San Carlos	35	7	25	1	4	1
_	San Sebastián	18	4	7	7	2	6
-	San Felipe	18	13	9	14	1	13
	San Mateo	-	-	-	-	-	-
_	Concepción		-	-	-	-	
	Chiquirichapa	-					-
_	San Martín	46	15	14	4	1	4
Ovetraltenanna	Sacatepéquez	40					4
Quetzaltenango _	Colomba	45	73	21	1	1	2
_	Coatepeque	90	30	36	44	4	46
-	Flores Costa Cuca	22	3	11	2	0	3
-	Génova	46	4	17	1	1	6
_	El Palmar	26	28	12	2	3	2
San Marcos	Ocós	31	8	8	6	2	5

Fuente: MINEDUC 2016.

Algunas de las instalaciones del sector público no cuentan con las condiciones adecuadas hacia los estudiantes, mantenimiento de infraestructura, materiales y equipo y los profesores no cubren el número de estudiantes, reflejado en una baja eficiencia de los estudiantes.

5.1.1.4 Idiomas

Guatemala es un país que se caracteriza por la gran diversidad que presenta en diferentes aspectos desde ambientales hasta sociales. Se reconoce que en el país se cuenta con 22 idiomas (Ministerio de Educación (MINEDUC), 2009) de los cuales, 7 se encuentran en el área de la cuenca del Ocosito. Los idiomas identificados en el área son el K'ique, Kaqchiquel, Mam, Q'anjobal, Ixil, Chuj y Español como el dominante, esto reflejando la diversidad lingüística presente en el Ocosito.

5.1.1.5 Migraciones

La principal fuente de empleo es la agricultura, se estima que el 58% de la población se dedica a esta actividad. Las contrataciones para esta actividad son informales y temporales, representando una fuente de ingreso inestable hacia la sociedad. Según reportes del Ministerio de Trabajo, las personas que se dedican a la agricultura son las personas que migran de manera temporal o permanente. Ofrecen sus servicios en la agricultura y en algunos casos la construcción, esta es una de las principales causas por las que surgen las migraciones, adicional, en busca de mejores oportunidades tanto de empleo como de estudio. Para los municipios de Quetzaltenango, las migraciones permanentes se localizan en el extranjero, principalmente en los Estados Unidos de América. Las familias que cuentan con familiares en el extranjero se encuentran beneficiadas por las remesas, esto se logra reflejar en infraestructura y vehículos.

5.1.1.6 Organización social

La organización municipal se encuentra conformada por Alcalde, Síndicos y Concejales los cuales son electos por la población correspondiente al área en que residen. Se cuenta con Consejos Comunitarios de Desarrollo (COCODE) conformado por representantes de cada una de las comunidades del municipio, estos participan en el sistema de Consejo Municipal de Desarrollo (COMUDE), al igual que la participación de entidades públicas como el Centro de Salud o Puesto de Salud, Comité Nacional de Alfabetismo (CONALFA), Policía Nacional Civil, Registro Nacional de las Personas (RENAP), Oficina Municipal de la Mujer y demás, de acuerdo a la ley de consejos de desarrollo y su reglamento el COMUDE es el responsable de proponer políticas, planes, programas, proyectos ajustado a las necesidades y fortaleciendo a la población (Flores & Gómez Sánchez, 2010). Algunos municipios de Retalhuleu y San Marcos cuentan con el apoyo de la Secretaría de Obras Sociales de la Esposa del Presidente (SOSEP) que se encuentran enfocado en proyectos sociales y fortaleciendo la participación de la mujer.

5.1.1.7 Tenencia de la tierra

Tenencia de la tierra es la correlación que existe entre las personas o grupo de personas y la tierra (Munro-Faure et al., 2003). En Guatemala es un tema de problemática que se ha presentado años atrás hasta en la actualidad. Para el caso de la cuenca se realizara un análisis a nivel municipal con el coeficiente de Gini, indicador que tiene la funcionalidad de medir la desigualdad de distribución. La calificación se encuentra de 0 y 1, donde 0 significa una perfecta igualdad mientras que 1 significa una desigualdad perfecta (Instituto de Agricultura Recursos Naturales y Ambiente -IARNA-, 2007) como se encuentran descrito en cuadro 6 y se muestra en figura 15.

Cuadro 6. Tenencia de la tierra a nivel municipal.

Departamento	Municipio	Índice de Gini	Promedio de Gin
	Retalhuleu	0.91	
Retalhuleu	Champerico	0.88	_
Datallandan	El Asintal	0.89	_
Retainuleu	Nuevo San Carlos	0.90	_
	San Sebastián	0.79	0.88
	San Felipe	0.90	_
	San Mateo	-	
Quetzaltenango	Concepción Chiquirichapa	-	_
	San Martín Sacatepéquez	0.81	_
	Colomba	0.91	_
Quetzaitenango	Coatepeque	0.92	_
	Flores Costa Cuca	0.93	0.00
	Génova	0.89	_ 0.90
	El Palmar	0.93	_
San Marcos	Ocós	0.64	0.64

Fuente: Instituto de Agricultura, Recursos Naturales y Ambiente (IARNA), 2007

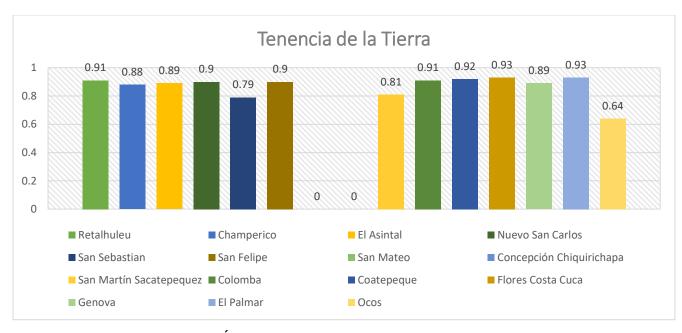


Figura 15. Índice de Gini en cuenca del río Ocosito

La desigualdad en la posesión de las tierras es un tema presente en el área, el coeficiente de Gini nos indica la desigualdad que existe, en la figura 9 se logra apreciar claramente que el coeficiente en cada uno de los municipios logra alcanzar el valor de 1, una desigualdad perfecta. La desigualdad de la tenencia de la tierra surge en donde pocos individuos, grupos o familias son poseedores de grandes extensiones territoriales, mientras que muchas personas, grupos o familias son poseedores de pequeñas extensiones. En la mayoría de los municipios, el índice de Gini indica que se encuentra sobre el 0.8, alcanzando el valor de 1, presentando una desigualdad perfecta. El problema de tenencia de la tierra se presenta principalmente dirigido hacia el sector agrícola, la mayoría de los terrenos son arrendados a las personas que practican la agricultura, en cultivos anuales.

5.1.1.8 Actividades productivas

El área cuenta con una diversidad teniendo la capacidad para realizar diferentes usos, tanto productivos como de protección. Las condiciones que cuenta el área hace posible realizar diferentes actividades tanto en el ámbito social, agronómico y demás. Se identifican diferentes actividades de las cuales la mayoría de las personas se beneficia, principalmente la agricultura, caza, pesca y silvicultura, seguido de restaurantes y hoteles, servicios comunales, sociales y personales, industria manufacturera textil y alimentación, enseñanza (docentes), actividades pecuarias y artesanales, establecimientos financieros, seguros, bienes inmuebles y servicios prestados a empresas, administración pública y defensa, siendo estas las principales fuentes de empleo para la población del Ocosito.

5.1.1.9 Infraestructura física y servicios

La población objetivo carece de servicios de calidad refiriéndose a infraestructura y servicio, se presenta una deficiencia de insumos y de personal profesional.

A. Servicios de salud

Los diferentes centros de salud, puestos y demás no cubren las necesidades básicas de la población a diferencia del sector privado, la mayoría de las personas no cuentan con los recursos para cubrir los gastos en este tipo de establecimientos, lo que dificulta el acceso a este servicio, la mayoría de los casos, las personas hacen uso principalmente de plantas medicinales debido a la disponibilidad en la que se encuentran tal y como se describe en el cuadro 7.

Cuadro 7. Centros de atención medica

Departamento	Municipio	Centro de Salud	Puesto de Salud y Centro de Convergencia	Sector Privado	Hospital	IGSS	Programa de Extensión de Cobertura	Organizaciones de Salud
	Retalhuleu	2	7	0	1	1	-	4
-	Champerico	1	10	4	0	1	-	0
Retalhuleu _	El Asintal	1	2	0	1	0	х	0
netalliuleu .	Nuevo San Carlos	1	4	0	0	0	-	0
-	San Sebastián	1	2	1	0	0	х	0
-	San Felipe	1	3	13	0	0	-	0
	San Mateo	-	-	-	-	-	-	-
-	Concepción	-	-	-	-	-	-	-
-	San Martín	1	12	0	0	0	-	1
Ouetreltenense	Colomba	1	3	0	0	0	-	0
Quetzaltenango _	Coatepeque	1	11	13	1	1	-	0
-	Flores Costa Cuca	1	12	0	0	0	-	0
-	Génova	1	9	0	0	0	-	0
-	El Palmar	1	19	0	0	0	-	0
San Marcos	Ocós	0	6	0	0	0	-	1

Fuente: Planes de desarrollo municipal, 2010

B. Servicio de agua y saneamiento básico

Una parte de la población, aproximadamente el 47%, no tienen acceso a agua potable lo que indica un aumento en el número de enfermedades por el consumo de agua sin ningún tipo de tratamiento para ser adecuada para consumo humano (cuadro 8).

Se carece con los recursos necesarios para cubrir una de las principales necesidades del ser humano, agregando que las principales fuentes de agua (nacimientos) se encuentran contaminadas o se encuentran secas, por problemas ambientales, donde se muestra en el cuadro 8 quienes disponen del servicio de agua y saneamiento básico.

Cuadro 8. Porcentaje de acceso a servicio de agua y saneamiento básico

Departamento	Municipio	Agua potable	Saneamiento básico
	2 . 11 . 1		
Departamento Retalhuleu Quetzaltenango	Retalhuleu	51.49%	49.9%
	Champerico	44%	40.5%
Retalhuleu	El Asintal	34.60%	9.0%
Retainatea	Nuevo San Carlos	57.00%	14.80%
	San Sebastián	62.90%	55.80%
	San Felipe	88.10%	0%
	San Mateo	-	-
	Concepción Chiquirichapa	-	-
	Retalhuleu 51 Champerico 4 El Asintal 34 Nuevo San Carlos 57 San Sebastián 62 San Felipe 88 San Mateo Concepción Chiquirichapa San Martín Sacatepéquez 94 Colomba 46 Flores Costa Cuca 5 Génova 32 El Palmar 5	94.60%	35.50%
Quetzaltenange		45%	28%
Quetzaiteriango	Coatepeque	46.90%	43.00%
	Flores Costa Cuca	55%	28%
	Génova	32.15%	48.80%
	El Palmar	55%	28%
San Marcos	Ocós	29.60%	19.30%

C. Servicio de desechos sólidos

Un 65% de la población no disponen de las condiciones sanitarias y de limpieza en los hogares adecuadas; en la mayorías de los hogares hacen uso de letrinas o fosas sépticas, las cuales se encuentran en mal estado, no se realiza un mantenimiento de las mismas, se encuentran en lugares no adecuados y no presentan las condiciones adecuadas para la evacuación de las aguas, en cuadro 9 indica la ubicación donde se deposita los desechos sólidos.

Cuadro 9 Ubicación de los desechos solidos

Departamento	Municipio	Desechos Solidos		
	Retalhuleu	Basurero municipal		
	Champerico	Basurero municipal		
Retalhuleu	El Asintal	Basurero municipal		
Retainuleu	Nuevo San Carlos	Basurero municipal		
	San Sebastián	Relleno		
	San Felipe	Basurero municipal		
	San Mateo	-		
	Concepción Chiquirichapa	-		
	San Martín Sacatepéquez	Basurero municipal		
Quetzaltananga	Colomba	Basureros clandestinos		
Quetzaltenango	Coatepeque	Basureros clandestinos		
	Flores Costa Cuca	Basureros clandestinos		
	Génova	Basureros clandestino		
	El Palmar	Basureros clandestinos		
San Marcos	Ocós	Basureros clandestinos		

Los sistemas de drenaje presentan diferentes problemas, desde la infraestructura hasta la ubicación de la desembocadura de las aguas, el trabajo de mantenimiento no es el apropiado y en algunas ocasiones no se realiza. El acceso al saneamiento básico

comprende seguridad y privacidad en el uso de estos servicios (Organización Mundial de la Salud, 2015).

Los municipios de Retalhuleu, Champerico, El Asintal, Nuevo San Carlos, San Felipe y San Martín Sacatepéquez cuentan con un basurero municipal, los cuales ninguno tiene un manejo adecuado de los desechos sólidos lo cual representa un problema al igual que en los demás municipios donde se encuentran basureros clandestinos. Los basureros se encuentran en puntos no adecuados, cerca de la población y/o cultivos los cuales se ven afectados, ocasionando obstrucción de los tragantes, contaminación de los ríos, los suelos, el aire, provocando enfermedades y demás, agregando que no se cuenta con la disponibilidad de vehículos adecuados para transportar los desechos.

Otra de las situaciones que se presenta respecto a los desechos sólidos, algunas personas la quema o la entierran en sus hogares, afectando a la salud de las familias. Se requiere reubicar basureros en puntos estratégicos en donde no afecte a las personas y realizar planes de manejo para reducir estos focos de contaminación.

D. Servicio de energía eléctrica

El 79% de la población de la cuenca cuentan con servicio de energía eléctrica, el resto no cuentan con acceso a este servicio debido a la ubicación en la que se encuentran no cubre ciertas áreas, como se describe en cuadro 10.

Con anterioridad La Unión Fenosa conjunto de Distribuidora de Electricidad de Occidente, S.A. (DEOCSA) y Distribuidora de Electricidad de Oriente, S.A. (DEORSA) Holdings Ltd (DDHL), eran entidades encargadas del servicio de energía eléctrica para esta región, por cuestiones administrativas en el 2016 paso a manos de IC Power Ltd.

Se cuenta con otras entidades que venden este servicio, dentro de la cuenca se encuentra hidroeléctricas las cuales algunas se encuentran en funcionamiento y otra en

proceso de construcción (Departamento de Desarrollo Energético, Ministerio de Energía y Minas -MEM-, 2012).

Cuadro 10. Porcentaje de acceso a servicio de energía eléctrica

Departamento	Municipio	Alumbrado Público
	Retalhuleu	93%
	Champerico	95%
Retalhuleu	El Asintal	80%
retuinated	Nuevo San Carlos	80%
	San Sebastián	95%
	San Felipe	96%
	San Mateo	-
	Concepción Chiquirichapa	-
	San Martín Sacatepéquez	86%
Quetzaltenango	Colomba	16%
Queizanenango	Coatepeque	80%
	Flores Costa Cuca	91%
	Génova	65%
	El Palmar	68%
San Marcos	Ocós	81%

E. Salud y sanidad pública

La mortalidad en el país es reconocido a causa de las enfermedades no transmisibles, seguido de enfermedades infecciosas, determinado por Centro Nacional de Epidemiologia (CNE) del Ministerio de Salud Pública y Asistencia Social (MSPAS), descrito en cuadro 11.

Cuadro 11. Porcentaje de las 10 primeras causas de mortalidad

Causa de mortalidad	Porcentaje
Neumonía	20.10%
Diabetes mellitus	15.17%
Infarto agudo	12.20%
Insuficiencia renal crónica	10.20%
Diarrea	9.00%
Insuficiencia cardiaca	8.90%

Exposición a factor no específico	8.37%
Fibrosis y cirrosis del hígado	7.35%
Desnutrición	6.80%
Accidente vascular encefálico	6.37%

Fuente: INE, Estadística de Salud, 2015

En años anteriores se determinaba que la principal causa de las muertes en el país era debido a las enfermedades trasmisibles entre un 70% y 80% y principalmente en países de pocos ingresos económicos, con el transcurso del tiempo las enfermedades transmisibles presentaron una decadencia siendo un 18% la causa de mortalidad para el 2006. El crecimiento población incide en gran parte a la causa de las enfermedades, incluyendo aspectos ambientales, económicos, sociales, globalización y demás (Ramírez Rivas, Núñez Pérez, Lemus Bojórquez, Orozco, & Muralles Albizures, 2015).

5.1.2 Características biofísicas

5.1.2.1 Clima

A. Estaciones meteorológicas

Se identificaron estaciones de las instituciones de Comisión Naciona del Agua (CONAGUA), Insituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) y Asociación Nacional del Café (Anacafé), la selección se baso en el numero de años de funcionamiento de las mismas y base de datos. Las estaciones seleccionadas se muestran en el cuadro 12.

Cuadro 12. Estaciones meteorológicas

Instituto Responsable	Nombre	Ubicación	Latitud	Longitud	
INSIVUMEH	Retalhuleu	Retalhuleu	14º31'19"	91º41'45''	
III SIV SIVILII	Labor Ovalle	Quetzaltenango	14º52'12"	91º30'50''	
Anacafé	Anacafé Coatepeque	Quetzaltenango	14º42'9''	91º50'52''	
Andeare	Helvetia	Quetzaltenango	14º40'55"	91º38'22''	

	San Isidro	Quetzaltenango	14º46'57.28''	91º42'52.25"
CONAGUA	Suchiate	Chiapas	14º42'52''	92º08'56''

Los datos sobre precipitación y evapotranspiración, registrados en la estación Coatepeque, ubicada en Quetzaltenango, se muestran en el cuadro 13.

Cuadro 13. Datos de la Estación Coatepeque, Quetzaltenango

Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
ETP	112.20	113.17	140.96	148.81	146.69	148.05	152.47	151.62	136.55	129.02	112.52	107.98
Рр	9.78	36.60	80.74	224.03	496.09	480.84	375.90	607.50	685.73	640.17	119.01	71.86

Con los datos del cuadro anterior, se realizó el climadiagrama correspondiente para dicha estación, mostrado en la figura 16.

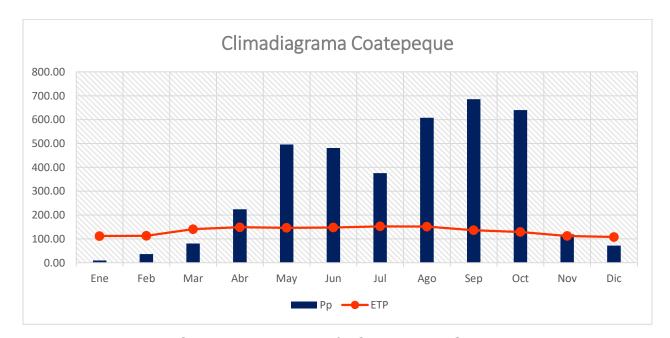


Figura 16. Climadiagrama Estación Coatepeque, Quetzaltenango.

En la gráfica puede observarse de forma clara el déficit hídrico existente en el periodo de tiempo que comprende los meses de diciembre a marzo y, un excedente de lluvia en el periodo de tiempo entre los meses de abril a noviembre, aunque el mes de noviembre se logra identificar la equidad que se presenta en cuanto a evapotranspiración y precipitación, presentando un balance.

Cuadro 14 Datos de la Estación El Palmar, Quetzaltenango

Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
ETP	104.35	105.42	131.86	138.49	138.41	139.81	144.15	143.52	130.11	123.21	105.25	100.21
Рр	38.62	56.94	88.63	216.63	578.89	683.80	420.06	584.87	575.41	522.64	196.44	40.62

Con los datos del cuadro 14 se realizó el climadiagrada correspondiente a la figura 17 ubicada a continuación.

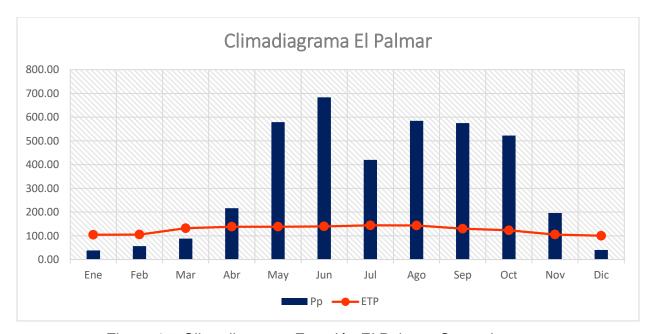


Figura 17. Climadiagrama Estación El Palmar, Quetzaltenango

Las condiciones climáticas para el área de El Palmar, se logra observar en el climadiagrama el déficit hídrico en el periodo de tiempo que comprende los meses de diciembre a marzo y, un excedente de lluvia en el periodo de tiempo entre los meses de abril a noviembre.

Cuadro 15. Datos de la Estación San Martín, Quetzaltenango

М	les	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
E.	TP	89.56	89.25	119.29	118.44	127.07	128.06	132.01	131.14	118.59	112.06	92.27	86.72
Р	,b	20.08	48.76	75.60	131.53	241.84	452.83	273.96	288.51	489.57	334.94	75.78	36.01

Para el climadiagrama mostrado en la figura 18 se utilizaron los datos del cuadro 15.

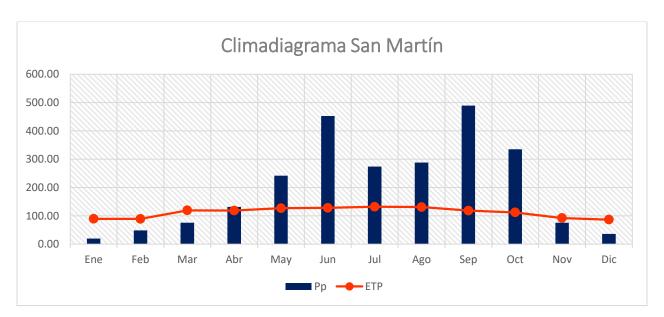


Figura 18. Climadiagrama Estación San Martín, Quetzaltenango

En el climadiagrama de San Martín Sacatepéquez se logra observar el déficit hídrico de los meses de noviembre a marzo y, un excedente de lluvia en el periodo de tiempo entre los meses de abril a octubre, aunque el mes de abril se logra observar un equilibrio.

Cuadro	16	Datos	de la	a Estación	Suchiate	México
Cuadio	10	Daios	uc ic		outiliate.	IVICAICO

Mes	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
ETP	118.10	119.89	151.72	161.51	160.15	159.53	164.20	163.66	148.39	140.66	120.93	115.08
Рр	31.9	34.3	35.5	109	118.2	173.3	117.8	113.1	309.4	213.8	147.4	63

Los datos descritos en el cuadro 16 se utilizaron para la elaboración del climadiagrama que se muestra en la figura 19.

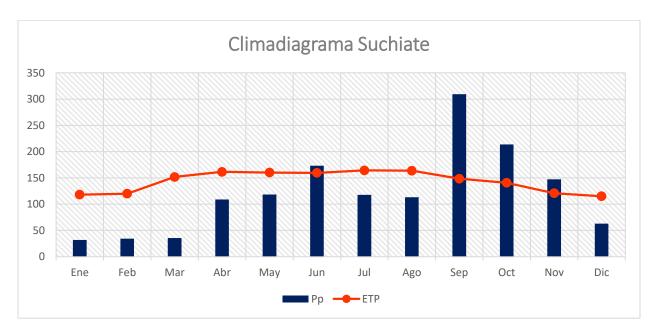


Figura 19. Climadiagrama Estación Suchiate, México

En el climadiagrama de Suchiate se logra observar la irregularidad que presenta, siendo meses no continuos los que presentan déficit hídrico, como se observa en los climadiagramas anteriores pertenecientes a Guatemala. Los meses de déficit hídrico son de diciembre a mayo y julio y agosto, un excedente de lluvia se observa en el mes de junio y entre septiembre y noviembre.

Proyección de precipitación según Gumbel

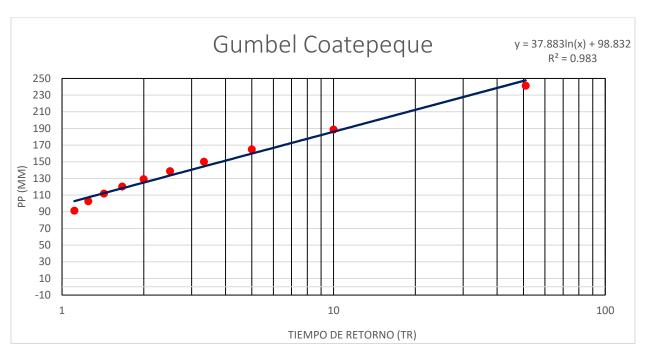


Figura 20 Diagrama de Gumbel para Coatepeque

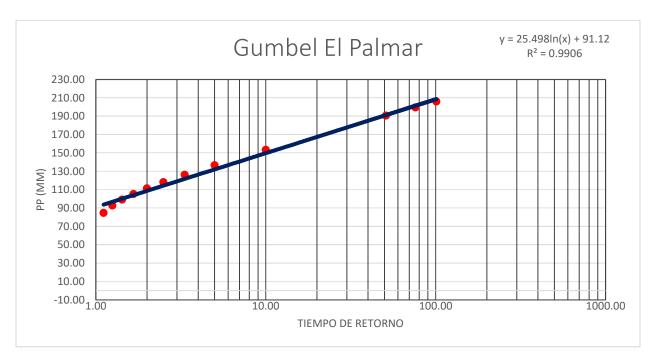


Figura 21 Diagrama de Gumbel para El Palmar

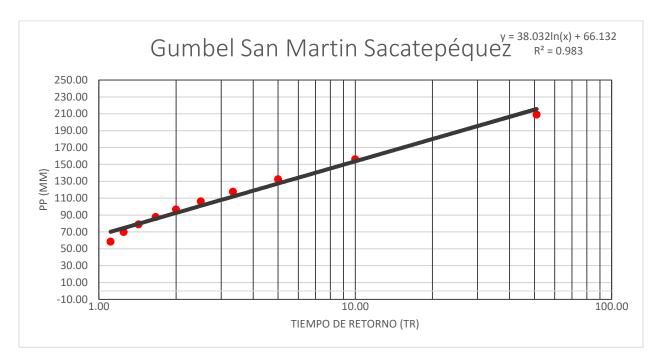


Figura 22 Diagrama de Gumbel para San Martin Sacatepéquez

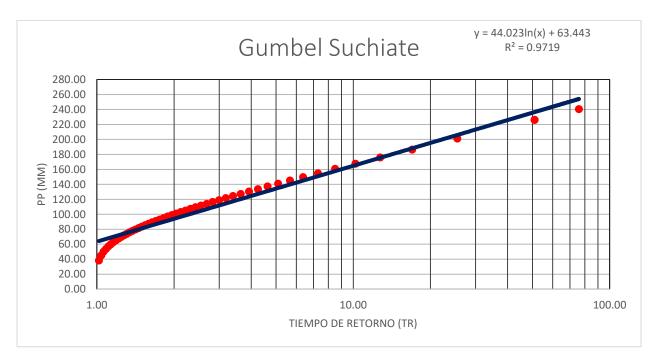


Figura 23 Diagrama de Gumbel para Suchiate

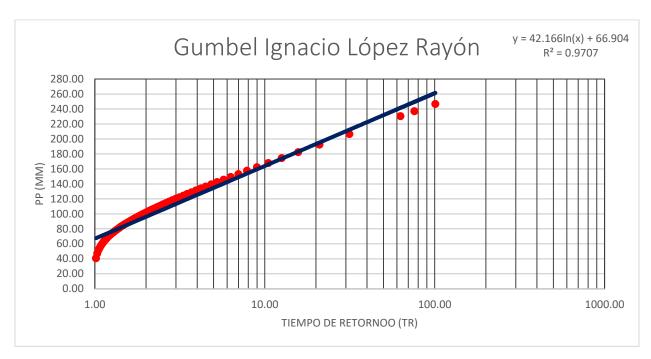


Figura 24 Diagrama de Gumbel para Ignacio López Rayón

Cuadro 17 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo de retorno de 2 años

d	Т	Pd/P24	P24, 2 años	Pd	Р	P
60	2	0.7034654	100	70.34654	70.34654	0
120	2	0.84191596	100	84.1915957	13.8450557	0
180	2	0.90102698	100	90.1026984	5.91110275	0
240	2	0.93380839	100	93.3808388	3.27814034	0
300	2	0.95464774	100	95.4647737	2.08393487	0
360	2	0.96906517	100	96.9065175	1.44174382	0
420	2	0.97963287	100	97.963287	1.05676949	0.07528351
480	2	0.98771114	100	98.7711142	0.80782724	0.63758053
540	2	0.99408695	100	99.4086947	0.63758053	1.05676949
600	2	0.99924716	100	99.9247165	0.51602175	2.08393487
660	2	1	100	100	0.07528351	5.91110275
720	2	1	100	100	0	70.34654
780	2	1	100	100	0	13.8450557
840	2	1	100	100	0	3.2781403

900	2	1	100	100	0	1.44174382
960	2	1	100	100	0	0.80782724
1020	2	1	100	100	0	0
1080	2	1	100	100	0	0
1140	2	1	100	100	0	0
1200	2	1	100	100	0	0
1260	2	1	100	100	0	0
1320	2	1	100	100	0	0
1380	2	1	100	100	0	0
1440	2	1	100	100	0	0

Figura 25 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de 2 años

Cuadro 18 Precipitación en el área de Coatepeque, Quetzaltenango en un tiempo de retorno de 5 años

d	Т	Pd/P24	P24, 5 años	Pd	Р	Р
60	5	0.82575363	128	105.696465	105.696465	0
120	5	0.92378115	128	118.243987	12.5475218	0

180	5	0.96184213	128	123.115793	4.87180623	0
240	5	0.98207349	128	125.705406	2.58961321	0
300	5	0.99462604	128	127.312134	1.60672733	0
360	5	1	128	128	0.68786631	0
420	5	1	128	128	0	0
480	5	1	128	128	0	0
540	5	1	128	128	0	0
600	5	1	128	128	0	1.60672733
660	5	1	128	128	0	4.87180623
720	5	1	128	128	0	105.696465
780	5	1	128	128	0	12.5475218
840	5	1	128	128	0	2.58961321
900	5	1	128	128	0	0.68786631
960	5	1	128	128	0	0
1020	5	1	128	128	0	0
1080	5	1	128	128	0	0
1140	5	1	128	128	0	0
1200	5	1	128	128	0	0
1260	5	1	128	128	0	0
1320	5	1	128	128	0	0
1380	5	1	128	128	0	0
1440	5	1	128	128	0	0

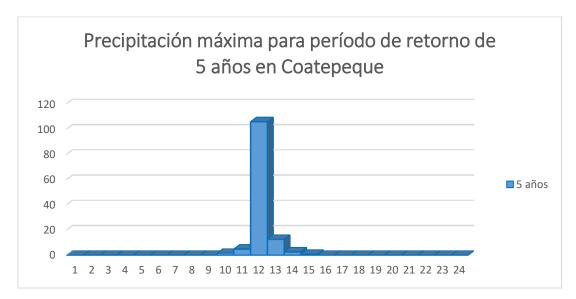


Figura 26 Pluviograma de Coatepeque, Quetzaltenango para un periodo de retorno de 5 años

Cuadro 19 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo de retorno de 10 años

d	Т	Pd/P24	P24, 10 años	Pd	Р	Р
60	10	0.40786232	149	60.7714862	60.7714862	0.64113393
120	10	0.61542102	149	91.6977324	30.9262462	0.75983904
180	10	0.74114192	149	110.430146	18.7324138	0.91485123
240	10	0.82545578	149	122.992911	12.5627649	1.12264493
300	10	0.88592671	149	132.003079	9.01016819	1.41022385
360	10	0.93141557	149	138.780919	6.77784009	1.82436818
420	10	0.96687651	149	144.064599	5.28367986	2.45196202
480	10	0.99529626	149	148.299143	4.23454391	3.46966397
540	10	1.0185826	149	151.768807	3.46966397	5.28367986
600	10	1.03801117	149	154.663664	2.8948566	9.01016819
660	10	1.05446729	149	157.115626	2.45196202	18.7324138
720	10	1.06858464	149	159.219111	2.10348487	60.7714862
780	10	1.08082872	149	161.043479	1.82436818	30.9262462
840	10	1.09154919	149	162.640829	1.59734999	12.5627649

900	10	1.10101378	149	164.051053	1.41022385	6.77784009
960	10	1.10943096	149	165.305213	1.25416039	4.23454391
1020	10	1.11696549	149	166.427858	1.12264493	2.8948566
1080	10	1.12374929	149	167.438644	1.0107856	2.10348487
1140	10	1.12988923	149	168.353495	0.91485123	1.59734999
1200	10	1.13547282	149	169.185451	0.83195589	1.25416039
1260	10	1.14057241	149	169.94529	0.75983904	1.0107856
1320	10	1.14524832	149	170.641999	0.69670967	0.83195589
1380	10	1.14955123	149	171.283133	0.64113393	0.69670967
1440	10	1.15352407	149	171.875086	0.59195297	0.59195297

Figura 27 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de 10 años

Cuadro 20 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo de retorno de 25 años

d	Т	Pd/P24	P24, 25 años	Pd	Р	Р
60	25	0.15896465	177	28.1367422	28.1367422	1.76882438
120	25	0.2821389	177	49.9385856	21.8018435	2.03673151

180	25	0.3803869	177	67.328481	17.3898953	2.37046437
240	25	0.46057973	177	81.5226124	14.1941314	2.79350001
300	25	0.5272756	177	93.3277811	11.8051687	3.34079978
360	25	0.58361745	177	103.300289	9.97250783	4.06627651
420	25	0.63184269	177	111.836156	8.53586702	5.05660866
480	25	0.67358739	177	119.224967	7.38881138	6.45841172
540	25	0.71007559	177	125.683379	6.45841172	8.53586702
600	25	0.74224133	177	131.376716	5.69333718	11.8051687
660	25	0.77080975	177	136.433325	5.05660866	17.3898953
720	25	0.79635234	177	140.954364	4.52103866	28.1367422
780	25	0.81932565	177	145.02064	4.06627651	21.8018435
840	25	0.84009878	177	148.697484	3.67684408	14.1941314
900	25	0.85897336	177	152.038284	3.34079978	9.97250783
960	25	0.87619828	177	155.087095	3.04881128	7.38881138
1020	25	0.89198076	177	157.880595	2.79350001	5.69333718
1080	25	0.90649472	177	160.449565	2.56897003	4.52103866
1140	25	0.91988717	177	162.82003	2.37046437	3.67684408
1200	25	0.93228328	177	165.01414	2.19411082	3.04881128
1260	25	0.94379024	177	167.050872	2.03673151	2.56897003
1320	25	0.9545004	177	168.946571	1.89569872	2.19411082
1380	25	0.96449376	177	170.715395	1.76882438	1.89569872
1440	25	0.97383994	177	172.36967	1.65427468	1.65427468

Figura 28 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de 25 años

Cuadro 21 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo de retorno de 50 años

d	Т	Pd/P24	P24, 50 años	Pd	Р	Р
60	50	0.06936399	198	13.7340702	13.7340702	2.70532383
120	50	0.1314518	198	26.0274565	12.2933863	3.00110489
180	50	0.18735126	198	37.0955502	11.0680938	3.34818832
240	50	0.23794366	198	47.1128445	10.0172943	3.75916352
300	50	0.28395051	198	56.2222012	9.10935672	4.25073298
360	50	0.32596822	198	64.5417079 8.319506		4.84543697
420	50	0.36449407	198	72.169825	7.62811707	5.57428515
480	50	0.39994596	198	79.1893006	7.01947557	6.48088399
540	50	0.4326777	198	85.6701846 6.48088399		7.62811707
600	50	0.46299078	198	91.6721745	6.0019899	9.10935672
660	50	0.49114374	198	97.2464596	5.57428515	11.0680938
720	50	0.51735952	198	102.437185	5.19072519	13.7340702
780	50	0.54183142	198	107.282622	4.84543697	12.2933863
840	50	0.56472785	198	111.816114	4.53349271	10.0172943

900	50	0.5861962	198	116.066847	4.25073298	8.31950675
960	50	0.60636603	198	120.060475	3.99362735	7.01947557
1020	50	0.62535171	198	123.819638	3.75916352	6.0019899
1080	50	0.64325453	198	127.364397	3.54475875	5.19072519
1140	50	0.66016457	198	130.712585	3.34818832	4.53349271
1200	50	0.67616219	198	133.880113	3.16752764	3.99362735
1260	50	0.69131928	198	136.881218	3.00110489	3.54475875
1320	50	0.70570041	198	139.72868	2.84746226	3.16752764
1380	50	0.71936366	198	142.434004	2.70532383	2.84746226
1440	50	0.73236148	198	145.007573	2.57356904	2.57356904

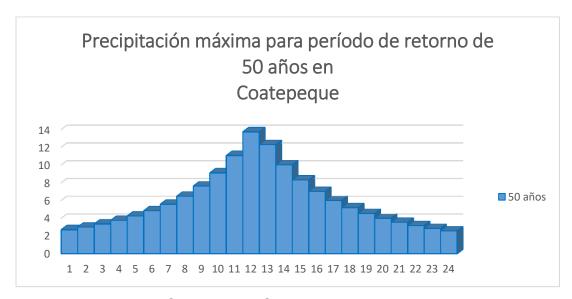


Figura 29 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de 50 años

Cuadro 22 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo de retorno de 75 años

d	Т	Pd/P24	P24, 75 años	Pd	Р	Р	
60	75	0.04173258	211	8.80557521	8.80557521	2.89102335	
120	75	0.08077515	211	17.0435557	8.23798046	3.12924938	

180	75	0.11737966	211	24.7671074	7.72355172	3.39818263
240	75	0.15176757	211	32.0229574	7.25585004	3.70333687
300	75	0.18413431	211	38.85234	6.82938257	4.05152143
360	75	0.21465299	211	45.2917806	6.43944057	4.45122443
420	75	0.24347749	211	51.3737493	6.08196876	4.91313514
480	75	0.27074507	211	57.1272088	5.75345949	5.45086627
540	75	0.29657855	211	62.5780751	5.45086627	6.08196876
600	75	0.32108819	211	67.749608	5.17153295	6.82938257
660	75	0.34437319	211	72.6627432	4.91313514	7.72355172
720	75	0.3665231	211	77.3363749	4.67363173	8.80557521
780	75	0.38761895	211	81.7875994	4.45122443	8.23798046
840	75	0.40773423	211	86.0319233	4.24432394	7.25585004
900	75	0.42693576	211	90.0834447	4.05152143	6.43944057
960	75	0.4452844	211	93.9550092	3.87156452	5.75345949
1020	75	0.46283576	211	97.6583461	3.70333687	5.17153295
1080	75	0.4796407	211	101.204187	3.54584084	4.67363173
1140	75	0.49574583	211	104.60237	3.39818263	4.24432394
1200	75	0.51119398	211	107.861929	3.25955962	3.87156452
1260	75	0.52602454	211	110.991179	3.12924938	3.54584084
1320	75	0.54027383	211	113.997779	3.0066003	3.25955962
1380	75	0.55397537	211	116.888802	2.89102335	3.0066003
1440	75	0.56716013	211	119.670787	2.78198509	2.78198509

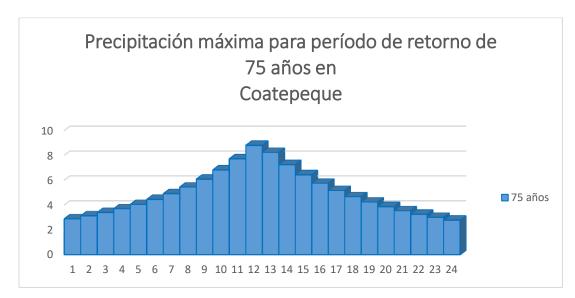


Figura 30 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de 75 años

Cuadro 23 Precipitación en el área de Coatepeque, Quetzaltenango para un tiempo de retorno de 100 años

		_				
d	Т	Pd/P24	P24, 100 años	4, 100 años Pd		Р
60	100	0.02893148	220	6.3649267	6.3649267	2.77710734
120	100	0.05655722	220	12.4425873	6.07766064	2.95678106
180	100	0.08296364	220	18.2520004	5.80941303	3.1544733
240	100	0.10822973	220	23.8105416	5.55854128	3.37267648
300	100	0.13242781	220	29.1341181	5.32357643	3.61432942
360	100	0.15562418	220	34.2373196	5.10320149	3.88291677
420	100	0.17787978	220	39.1335526	4.89623303	4.18259538
480	100	0.19925072	220	43.8351578	4.70160523	4.51835611
540	100	0.2197887	220	48.3535139	4.51835611	4.89623303
600	100	0.2395415	220	52.6991296	4.34561564	5.32357643
660	100	0.2585533	220	56.8817249	4.18259538	5.80941303
720	100	0.27686502	220	60.9103044	4.02857947	6.3649267
780	100	0.29451464	220	64.7932212	3.88291677	6.07766064
840	100	0.31153743	220	68.5382351	3.74501394	5.55854128

900	100	0.3279662	220	72.1525645	3.61432942	5.10320149
960	100	0.34383151	220	75.6429326	3.49036806	4.70160523
1020	100	0.35916186	220	79.0156091	3.37267648	4.34561564
1080	100	0.37398385	220	82.2764479	3.26083886	4.02857947
1140	100	0.38832237	220	85.4309212	3.1544733	3.74501394
1200	100	0.40220068	220	88.4841498	3.05322854	3.49036806
1260	100	0.41564059	220	91.4409308	2.95678106	3.26083886
1320	100	0.42866256	220	94.3057633	2.8648325	3.05322854
1380	100	0.44128578	220	97.0828707	2.77710734	2.8648325
1440	100	0.45352828	220	99.7762215	2.6933508	2.6933508

Figura 31 Pluviograma de Coatepeque, Quetzaltenango en un periodo de retorno de 100 años.

5.1.2.2 Zonas de Vida

Dentro de la cuenca se encuentran cuatro zonas de vida según la metodologia de Holdrigde las cuales se logran apreciar en la Figura 32, las cuales se realizara una breve descripcion de cada una de estas con informacion recopilada por De la Cruz quien se enfoca a nivel de reconocimiento en Guatemala.

Bosque Húmedo Subtropical (cálido) – bh-S(c)

La cobertura del bh-S(c) es una franja que se dirije desde Mexico hasta El Salvador atravesando la Costa Sur, con un ancho de 10 a 22 km, tambien se logra encontrar en una parte del departamento de Peten. El área de cobertura dentro de la cuenca es de 621.05 Km² lo que representa un 32% de área.

Cuadro 24 Parámetros de Bosque Húmedo Subtropical (cálido)

PP Min.	PP Max.	PP Pro.	To Min.	То Мах.	ETP	Elevación	Elevación
(mm)	(mm)	(mm)	(oC)	(oC)	Pro.	Min. (msnm)	Max. (msnm)
1200	2000	1600	22	27	0.95	0	80

Las tierras en esta zona de vida poseen una topografia ligeramente suave, con suelos fertiles, las cuales son adecuadas para sistemas agroforestales y/o silvopastoriles, por ejemplo un sistema taungya es una alternativa de uso de la tierra en estas areas.

Las especies indicadoras de esta zona son Sterculia apetaba, Platymiscium dimorphandrum, Chlorophora tinctoria, Cordia alliodora entre otras.

Bosque Muy Húmedo Montano Bajo Subtropical – bmh-MB

El Bosque Muy Humedo Montano Bajo Subtropical se caracteriza por su topografia accidentada principalmente en faldas de volcanes. Cuenta con un área de 56.05 Km² representando un 3% de cobertura de la cuenca, siendo la porcion mas pequeña en representacion de cobertura.

Cuadro 25 Parámetros de Bosque Muy Húmedo Montano Bajo Subtropical

PP Min.	PP Max.	PP Pro.	To Min.	То Мах.	ETP	Elevación	Elevación
(mm)	(mm)	(mm)	(oC)	(oC)	Pro.	Min. (msnm)	Max. (msnm)
2065	3900	2983	12.5	18.6	0.35	1800	3000

Esta zona presenta un relieve accidentado, presentando dificultad en el manejo de actividades agricolas por lo que se recomienda realizar practicas adecuadas de conservación. Foresteria con protección o producción son actividades apropiadas para este tipo de tierras.

Una de las principales especies indicadoras de esta zona es *Cupressus lusitánica*, agregando tambien *Pinus ayacahuite*, *Quercus sp.* y demas.

Bosque Muy Húmedo Subtropical (cálido) – bmh-S(c)

Es la zona de vida que representa mayor porcentaje de cobertura sobre el pais, la mayor parte se encuentra ubicada en la Costa Sur, logra abarcar algunos departamenos en la parte norte del pais como Izabal, Quiche, Alta Verapaz y Peten, al igual que una parte de Huehuetenango. El área de cobertura dentro de la cuenca es de 1177.51 km² lo que representa un 61%.

PP Min.	PP Max.	PP Pro.	To Min.	То Мах.	ETP	Elevación	Elevación
(mm)	(mm)	(mm)	(oC)	(oC)	Pro.	Min. (msnm)	Max. (msnm)
2136	4327	3232	25	31	0.45	80	1600

Cuadro 26 Parámetros de Bosque Muy Húmedo Subtropical (cálido)

El relieve en esta zona se encuentra de plano hasta accidentado, es recomendable establecer las areas adecuadas para manejo forestal y actividades agricolas con las respectivas tecnicas de conservación. Las condicones climaticas que presenta hace que sea una de las zonas de vida mas ricas en cuanto a su composición florística, las especies indicadoras son *Andira intermis, Cybistax donnell-smithii, Sickingig salvadorensis, Scheelea preussii, Enterolobium cyclocarpum, Terminalia oblonga y Triplaris melaenodendrum.*

Bosque Seco Subtropical – bs-S

Cuenta con un área de 68.01 Km² en la cuenca, representando un 4% de la cobertura, se caracteriza por la franja angosta que se presenta desde Mexico hasta las cercanias

del Canal de Chiquimulilla. Se logra encontrar en otras areas del pais como Baja Verapaz y Huehuetenango (De la Cruz, 1982).

Cuadro 27 Parámetros de Bosque Seco Subtropical

PP Min.	PP Max.	PP Pro.	To Min.	То Мах.	ETP	Elevación	Elevación
(mm)	(mm)	(mm)	(oC)	(oC)	Pro.	Min. (msnm)	Max. (msnm)
500	1000	750	19	24	1.5	0	1200

El relieve de esta zona se encuentra desde plano hasta accidentado moderado, permitiendo el uso del suelo para actividades productivas, tanto para cultivos anuales como perennes. Las especies indicadoras que se encuentran en esta zona son Leucaena guatemalensis, Avicennia nítida, Rhizophora mangle, Albizzia caribaea, Cochilospermun vitifolium, Sabal mexicana, Alvaradoa amorphoides, Suitenia humilia, Phylocarpu septentrionalis, Ceiba aesculifolis.



Figura 32 Zonas de Vida de la cuenca del río Ocosito

5.1.3.1 Recurso Hídrico

El estudio hidrológico es una parte elemental para evaluar aspectos cualitativos y cuantitativos de una cuenca hidrográfica, determinando el comportamiento de la misma y de esa manera establecer una planeación y manejo sostenible de los recursos naturales.

Morfometría

Los datos morfométricos son uno de los aspectos de mayor relevancia en el análisis hídrico; representan las características físicas y el drenaje de una cuenca.

Cuadro 28 Aspectos morfométricos de la cuenca Ocosito

Aspecto Morfométrico	Dato
Área de cuenca	1933 Km²
Perímetro de la cuenca	207 Km
Longitud del cauce principal	91.39 Km
Factor de forma	4.336
Densidad de drenaje	0.6 km/km ²

La longitud de las corrientes representa la evacuación de escorrentía, se considera que las cuencas con mayor número de afluentes son mejor drenadas. El factor forma nos indica que es una cuenca redonda, lo cual produce flujos de descarga altos en periodos cortos. La cuenca del río Ocosito presenta una densidad de drenaje de 0.60 km/km², categorizada como baja; áreas con densidades bajas se presentan donde los suelos son muy permeables y la pendiente es baja, este valor expresa la capacidad para desalojar un volumen de agua dado (Martínez León, 2000).

• Relación de bifurcación

Horton (1945) sugirió la jerarquización de cauces de acuerdo al número de orden de un río, como una medida de ramificación del cauce principal en una cuenca hidrográfica.

Cuadro 29 Datos de corrientes del río Ocosito

Orden de corriente (u)	No. Orden de cada cauce (Nu)	LOG Nu	
1	14	1.15	
2	4	0.60	
3	1	0.00	

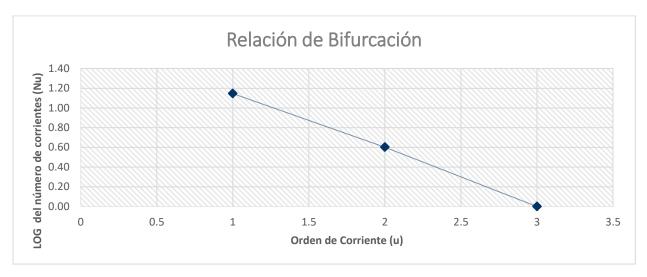


Figura 33 Gráfica del orden de Corrientes vrs logaritmo del número de corrientes

La grafica de la figura 33 presenta una recta en sentido negativo, lo que indica que el número de corrientes de la cuenca es la correcta.

5.1.4.1 Suelos y Tierra

Fisiografía

Es de relevancia conocer la fisiografía para la identificación de características importantes principalmente de suelos, la cual se basó en varios estudios para la clasificación, tales como el Mapa de Formas de la Tierra realizado por el IGN (1972), el análisis fisiográfico contenido en el Estudio de Suelos a nivel de Reconocimiento de la República de Guatemala (Simmons, Tarano y Pinto, 1959), entre otros. (Ministerio de Agricultura Ganadería y Alimentación, Programa de Emergencia por Desastres Naturales, Alvarado Cabrera, & Herrera Ibáñez, 2001).

La fisiografía es identificada por regiones, las cuales son conformadas por unidades denominadas como Gran Paisaje que poseen contenido geomorfológico. El área cuenta con 3 regiones fisiográficas y 8 unidades (Gran Paisaje).

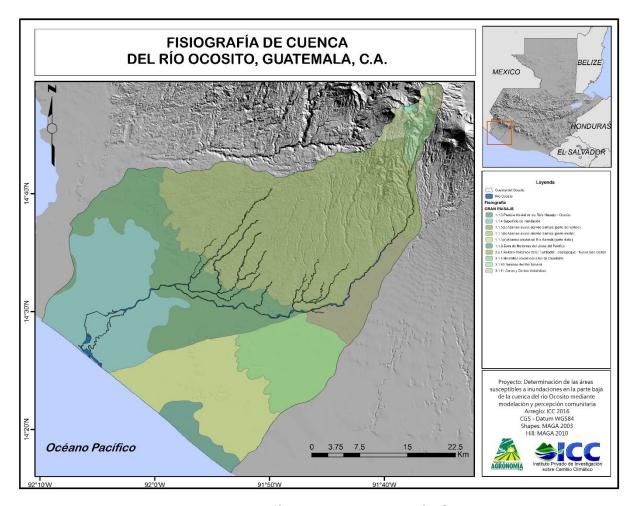


Figura 34 Fisiografía de la cuenca del río Ocosito

La mayor cobertura del área superficial de la cuenca es representada por El Gran Paisaje Relleno volcánico del El Tumbador perteneciente a la región fisiográfica Pendiente volcánica reciente como se logra observar en la Figura 344. A continuación se encuentra las diferentes unidades pertenecientes a las regiones fisiográficas.

Cuadro 30 Unidades fisiográficos y geomorfológicos de la Cuenca del río Ocosito

Región Fisiográfica	Gran Paisaje
	Planicie aluvial de los ríos Naranjo - Ocosito
	Superficie de inundaciones
Llanura Costera del Pacífico	Abanico aluvial del río Samalá
	Zona de marismas del Litoral del Pacífico

Pendiente Volcánica Reciente	Relleno volcánico del El Tumbador		
	Montañas volcánicas altas de Occidente		
Tierras Altas Volcánicas	Terrazas del río Talcaná		
	Conos y domos volcánicos		

Fuente: Ministerio de Agricultura Ganadería y Alimentación et al., 2001

• Taxonomía de suelos a nivel de suborden

La cuenca del Ocosito, a nivel de suborden, cuenta con suelos Aquents (Eq), Aquolls (Mq), Orthents (Eo), Psamments (Ep), Udands (Dd), Udepts (Pd), Uderts (Vd), Udult (Ud), Ustalfs (Ls), Usterts (Vs), Ustolls (Ms) y Vitrands (Dv).

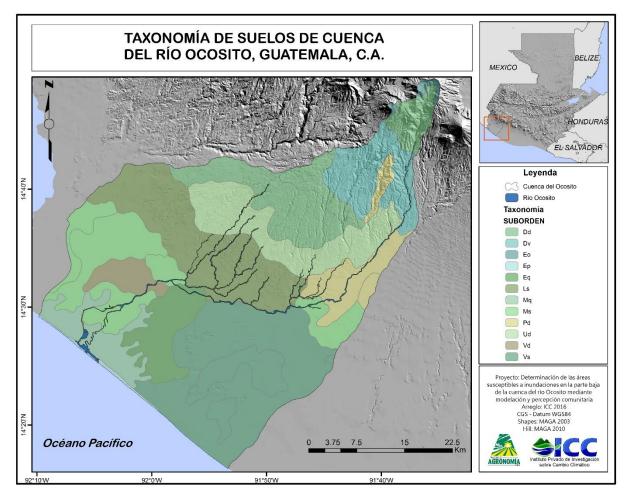


Figura 35 Taxonomía de suelos de la cuenca del río Ocosito

Capacidad de Uso de la Tierra con Metodología del INAB

Las categorías de capacidad de uso de la tierra establecidas por el Instituto Nacional de Bosques se encuentran presente en la cuenca del Ocosito, lo que refleja diversidad en cobertura vegetal, dado a los diferentes usos que se logra realizar.

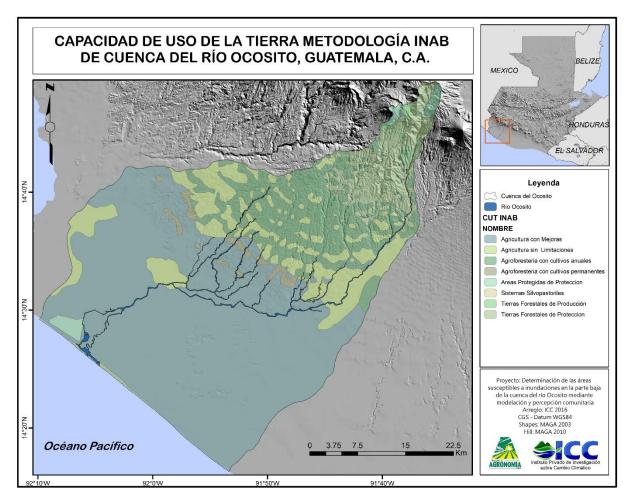


Figura 36 Capacidad de uso de la tierra según la metodología del INAB de la cuenca del río Ocosito

Cada una de las categorías plantea los diferentes usos que corresponden y el manejo adecuado que debe realizarse de acuerdo a las condiciones del área. El (Instituto Nacional de Bosques INAB, 1997) planteo los parámetros adecuados según las capacidades de los suelos, los cuales se harán mención a continuación para cada una de las categorías identificadas en el área de estudio.

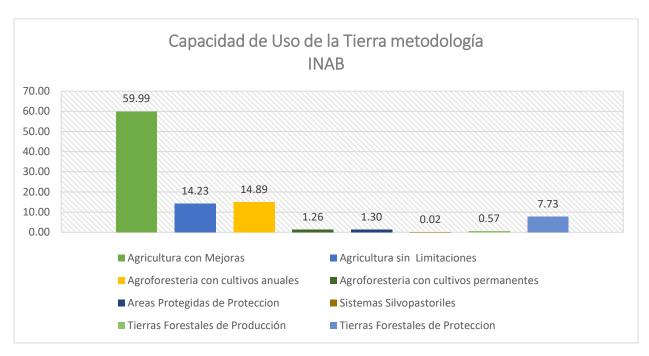


Figura 37 Porcentaje de capacidad de uso de la tierra de la Cuenca del río Ocosito

La cuenca presenta un dominio en suelos con vocación en actividades agrícolas, superando el 70% de cobertura del área, en la figura 37 se logra observar que la mayor capacidad se enfoca en la agricultura con mejoras alcanzando un 60% de área y un 14% con capacidad de agricultura sin limitaciones. Otra de las capacidades seguida de la agricultura con mejoras es la agroforestería con cultivos anuales con casi el 15% de área. En la parte alta de la cuenca se cuenta con áreas forestales destinas a protección las cuales no son decretas como áreas de protección, debiendo ser establecido por el (Sistema Guatemalteco De Áreas Protegidas (SIGAP), 2015), estas representan un 7.73% del área. Agroforestería con cultivos permanentes y áreas protegidas de protección no superan el 2% de cobertura del área, mientras que sistemas silvopastoriles y tierras forestales de producción no alcanzan el 1%, considerando áreas no representativas para Ocosito.

Textura del suelo

La textura determina la cantidad de material por la que se encuentra conformado los suelos, siendo estos arcillosos, limosos o arenosos, agregando que es una característica primordial por la cual se logra determinar diferentes parámetros, la capacidad de infiltración, capacidad de soporte, retención de humedad, composición mineralógica, composición química y demás (Rucks, García, Kaplán, Pond de León, & HIII, 2004).

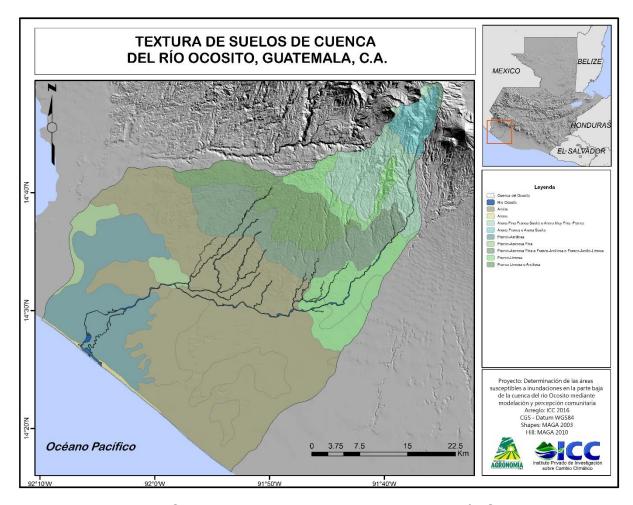


Figura 38 Clase textural del suelo de la cuenca del río Ocosito

La clase textural es uno de los elementos esenciales para realizar la modelación hidrológica, la cual sirve de base relacionándolo con el uso de la tierra y la pendiente, la capacidad de infiltración es el parámetro a considerar para la categorización de las

clases texturales, establecida por el Servicio de Conservación de Recursos Naturales conocida por sus siglas en ingles NRCS.

El Ocosito cuenta con nueve diferentes tipos de textura, encontrando arcilla, arena, arena fina franca suelta, arena franca o arena suelta, franco arcillosa, franco arenosa fina, franco arenosa fina o franco arcillosa, franco limosa y franco limosa o arcillosa. La NRCS estableció la categorización de la siguiente manera;

Cuadro 31 Criterios de clasificación para la clase textural de suelos según el NRCS

Grupo	Α	В	С	D
Tasa de infiltración	0.80-1.10 cm/h	0.40-0.80 cm/h	0.20-0.40 cm/h	0.0-10 cm/h
Permeabilidad	Infiltración rápida incluso con humedad elevada	Infiltración moderada con humedad elevada	Infiltración lenta si presentan humedad	Infiltración muy lenta cuando están húmedos
Textura	Arenas, arenas y limos	Franco-arenosas, franco-arcilloso- arenosas, o franco- limosas	Franco-argilosas, franco-arcillo- limosas, limosas o arcillo-arenosas	Arcillosos o niveles freáticos permanente cercanos a la superficie

Fuente: ICC, 2012

Los criterios mencionados en el cuadro 31, fueron considerados para la elaboración del mapa textural de la cuenca el cual es un parámetro esencial para determinar el número de curva, del cual surge para la elaboración de la modelación hidrológica.

5.1.5.1 Cobertura y Vegetación

La cuenca del río Ocosito posee diferentes capacidades en uso de la tierra haciéndola diversa en cobertura vegetal y entre otros elementos, siendo infraestructura, cuerpos de agua y demás. En el figura 39 se logra observar los diferentes usos de la tierra.

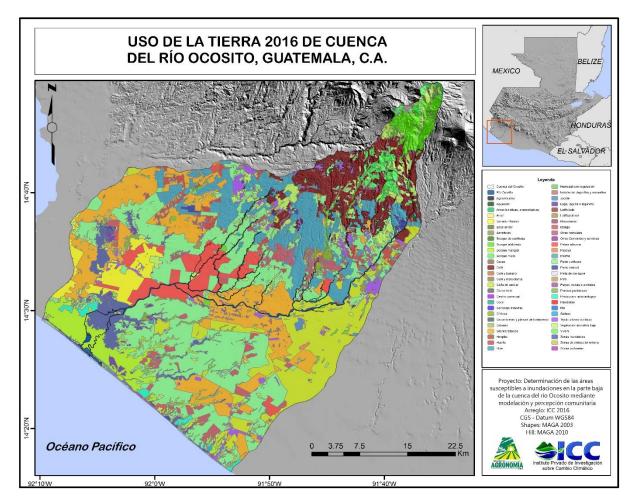


Figura 39 Uso actual de la tierra de la Cuenca del río Ocosito, 2016

El uso de la tierra se encuentra influenciada por aspectos climáticos, ya sea la temperatura y la precipitación, el tipo de suelos, la capacidad de infiltración, la profundidad efectiva, la pedregosidad y demás. Se debe agregar que el manejo es un aspecto a considerar como se mencionó con anterioridad. El área presenta una gran variedad de usos, contando con 55 diferentes usos en los cuales los que predominan se encuentra, vegetación arbustiva baja, tejido urbano, pasto cultivado, hule, huerto, bosque latifoliado, granos básicos, mango, bosque manglar y caña de azúcar, en la figura 40 se logra apreciar la gráfica de los usos mencionados representado en porcentaje de cobertura.

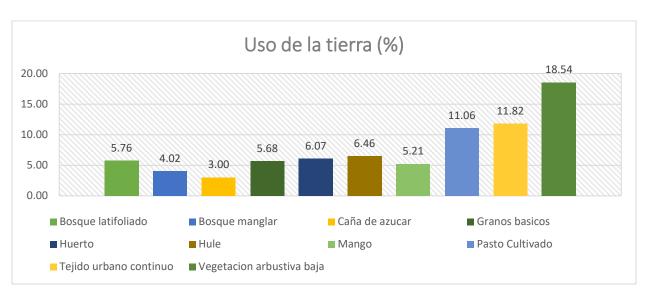


Figura 40 Porcentaje de cobertura de los usos de la tierra

La diversidad de cobertura presente en la cuenca convierte el área muy valiosa, dándole importancia para la conservación y protección de los recursos. Dentro de la cuenca se encuentran áreas protegidas decretadas por el (Sistema Guatemalteco De Áreas Protegidas -SIGAP-, 2015); en la parte alta de la cuenca se encuentra el volcán de Chicabal y Siete Orejas, áreas en donde se encuentran bosques naturales y en la litoral del pacifico se encuentra el Manchón Guamuchal, considerándolas como áreas prioritarias de la cuenca. Es de importancia el proteger y resguardar dichas áreas, realizar actividades de reforestación para la recuperación de las áreas en donde se ha perdido la diversidad, según su capacidad, se encuentra beneficiado no solamente los suelos, según estudios "al aumentar un 10% la cobertura de bosque nativo en la cuenca, los caudales aumentan en un 6% sobre una base anual, mientras que en verano lo hacen en un 14%. Resultados opuestos se obtienen cuando las cuencas son forestadas o reforestadas con árboles exóticos como pinos o eucaliptos" (Cuevas, Little, & Oyarzún, 2013). La diversidad del uso de la tierra en el área se presenta debido a que muchas familias realizan plantaciones de diferentes cultivos, principalmente granos básicos y hortalizas, en la figura se identifica la dominancia de granos básicos como huerto. Es de importancia hacer énfasis que las áreas en donde se practica los huertos familiares, enfocándose en la parte baja y media de la cuenca, son suelos que requiere de manejo adecuado para realizar actividades agrícolas como

lo indica el mapa de capacidad de uso de la tierra. Se presentan buenas producciones ya que son áreas apropias, pero se presentan alguna limitaciones, por lo que se debe indicar los tipos de cultivos adecuados.

5.1.6.1 Fauna

Orden	Familia	Especie	Nombre común	Índices CONAP	Apéndice s CITES
Apodiformes	Trochulidae		Colibrí	3	II
Artiodactyla	Cervidae	Odocoileuz virginianuz mayensis	Venado cola blanca	3	III
Artiodactyla	Cervidae	Masma americana	Cabrito	3	III
Carnivora	Felidae	Herpailurus yaguarondi	Tigrillo	2	I
Falconiformes	Accipitridae		Gavilán	2 - 3	1/11
Falconiformes	Falconidae	Falco	Halcón	2 - 3	I/II
Galliformes	Cracidae	Penelopina nigra	Chacha negra	2	III
Lamniformes	Cetorhinidae	Cetorhinus maximus	Tiburón peregrino		II
Mesogastropoda	Strombidae	Strombus gigas	Concha reina	3	II
Podicipediformes	Podicipedidae	Podilymbus gigas	Pato Sambullidor	1	I
Psittaciformes	Psittacidae		Loro	2 - 3	I/II
Psittaciformes	Psittacidae	Bolborhyncus lineola	Perica	3	II
Psittaciformes	Psittacidae	Pionopsitta haematottis	Cotorra	3	II
Psittaciformes	Psittacidae	Aratinga spp	Chocoyo	3	II
Squamata	Iguanidae	Iguana iguana	Iguana verde	3	II
Squamata	Colubridae	Clelia clelia	Víbora		II
Squamata	Viperidae	Crotalus durissus	Cascabel		III
Squamata	Elapidae	Micrurus diastema	Coral		III
Strigiformes	Strigidae		Tecolote	3	II
Strigiformes	Strigidae		Lechuza	1 - 2 - 3	II
Testudinata	Cheloniidae	Lepidochelys olivacea	Parlama	3	I

Anseriformes Anatidae Anas acuta Pato golondrino Arcoida Arcidae Anadara spp Concha de burro Artiodactyla Cervidae Mazama spp Huitzizil Carnivora Felidae Leopardus Colocolo Carnivora Procyonidae Nasua narica Pizote Carnivora Mustelidae Comadreja Carnivora Canidae Canis landrus Coyote Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistreflus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coracifformes Momotidae Crotophaga Pijuy Decapoda Penaeidae Corotophaga Pijuy Falconiformes Accipitridae Didelphis spp Tacuazín Passeriformes Icteridae Cassostrea spp Ostión Passeriformes Icteridae Icterus spp Cenzontile Passeriformes Icteridae Icterus spp Chintotes Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Relacidae Curvina Pelecaniformes Centropomidae Relacidae Robalo Perseriformes Icteridae Robalo Perseriformes Icteridae Robalo Perseriformes Centropomidae Robalo Perseriformes Centropomidae Robalo Perciformes Ardeidae Ardea alba Garza Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ardidae Bagre Squamata Boidae Boa constrictor Mazacuata	Trogoniformes	Trogonidae	Pharomachrus moccino	Quetzal	3	1
Arcoida Arcidae Anadara spp Concha de burro Artiodactyla Cervidae Mazama spp Huitzizil Camivora Felidae Leopardus colocolo Camivora Procyonidae Nasua narica Pizote Camivora Procyonidae Camis landrus Coyote Camivora Mustelidae Canis landrus Coyote Camivora Canidae Canis landrus Coyote Camivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Crotophaga Pijuy Decapoda Penaeidae Canomarano Didelphimorphia Didelphidae Didelphis spp Tacuazín Passeriformes Passeriformes Mimidae Cassostrea spp Ostión Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Icteridae Icterus spp Carpones Perciformes Icteridae Robalo Perciformes Icteridae Robalo Perciformes Centropomidae Robalo Perciformes Centropomidae Robalo Perciformes Icteridae Robalo Perciformes Centropomidae Robalo Perciformes Robalo Pelicidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae	Anseriformes	Anatidae		Pato golondrino		
Artiodactyla Cervidae Mazama spp Huitzizil Carnivora Felidae Leopardus colocolo Gato de monte Carnivora Procyonidae Nasua narica Pizote Carnivora Procyonidae Nasua narica Pizote Carnivora Mustelidae Comadreja Carnivora Canidae Canis landrus Coyote Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciliformes Momotidae Crotophaga Pijuy Decapoda Penaeidae Crotophaga Pijuy Decapoda Penaeidae Didelphis spp Tacuazin Palconiformes Accipitridae Chondrohierax gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Armas Mimidae Mimus spp Cenzonte Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Helicidae Helix spp. Caracoles Siluriformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae Aridae Bagre						
Carnivora Felidae Leopardus colocolo Gato de monte Carnivora Procyonidae Mapache Carnivora Procyonidae Nasua narica Pizote Carnivora Mustellidae Comadreja Camivora Canidae Canis landrus Coyote Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphinorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax Gavilán Pico de Urracas Gavilán Pico de Urracas Passeriformes Icteridae Zanates Passeriformes Icteridae Zanates Passeriform						
Carnivora Procyonidae	- Titledaetyla	Connace		TIGHELEN		
Carnivora Procyonidae Masua narica Pizote Carnivora Procyonidae Nasua narica Pizote Carnivora Mustelidae Comadreja Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax uncinatus Gavilán Pico de gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Icteridae Icterus spp Chiltotes Passeriformes <	Carnivora	Felidae	•	Gato de monte		
Carnivora Procyonidae Nasua narica Pizote Carnivora Mustelidae Comadreja Carnivora Canidae Canis landrus Coyote Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Columba sp Pijuy Cangrejo Caracoles Cangrejo	Carnivora	Procvonidae		Mapache		
Carnivora Mustelidae Comadreja Carnivora Canidae Canis landrus Coyote Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Cassostrea spp Ostión Passeriformes Icteridae Asseriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ardidae Aridae Bagre	Carnivora		Nasua narica	<u> </u>		
Carnivora Canidae Canis landrus Coyote Carnivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Cangrejo nazareno Cangrejo nazareno Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Gavilán Pico de gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Icteridae Zanates Passeriformes Icteridae Clarineros Passeriformes Icteridae Clarineros Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardea alba <td>Carnivora</td> <td>•</td> <td></td> <td>Comadreja</td> <td></td> <td></td>	Carnivora	•		Comadreja		
Camivora Canidae Vulpes sp Zorros Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Centropomidae Robalo Perciformes Centropomidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae Midae Melanerpes spp Carpontero	Carnivora	Canidae	Canis landrus	<u> </u>		
Chiroptera Vespertilioninae Pipistrellus spp Murciélago Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Cassostrea spp Ostión Passeriformes Icteridae Cassostrea spp Ostión Passeriformes Icteridae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Rodea Robalo Perciformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ardidae Ardiae Bagre						
Cingulata Dasypodidae Armadillo Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Cangrejo nazareno Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae Aridae Bagre						
Columbiforme Columbidae Columba sp Paloma Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax Gavilán Pico de uncinatus gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Sciaenidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	·	·	4440			
Coraciiformes Momotidae Guardabarrancos Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax Gavilán Pico de uncinatus gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre			Columba sp			
Cuculiformes Cuculidae Crotophaga Pijuy Decapoda Cangrejo nazareno Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax uncinatus Gavilán Pico de gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Urracas Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Clarineros Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre						
Decapoda Penaeidae Camarón Didelphimorphia Didelphidae Didelphis spp Tacuazín Falconiformes Accipitridae Chondrohierax gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae Bagre			Crotophaga			
Decapoda Penaeidae Didelphimorphia Didelphidae Didelphis spp Tacuazín Chondrohierax Gavilán Pico de uncinatus gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Icteridae Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Clarineros Passeriformes Icteridae Clarineros Passeriformes Icteridae Clarineros Passeriformes Centropomidae Robalo Perciformes Aridae Bagre		- Cadanaad	Grotopriaga			
DecapodaPenaeidaeCamarónDidelphimorphiaDidelphidaeDidelphis sppTacuazínFalconiformesAccipitridaeChondrohierax uncinatusGavilán Pico de ganchoOstreoidaOstreidaeCassostrea sppOstiónPasseriformesUrracasPasseriformesIcteridaeZanatesPasseriformesMimidaeMimus sppCenzontlePasseriformesIcteridaeIcterus sppChiltotesPasseriformesIcteridaeClarinerosPasseriformesIcteridaeIcterus sppChorcha norteñaPelecaniformesArdeidaeArdea albaGarzaPerciformesCentropomidaeRobaloPerciformesSciaenidaeCurvinaPiciformesPicidaeMelanerpes sppCarpinteroPulmonataHelicidaeHelix spp.CaracolesSiluriformesAriidaeBagre	Decapoda					
Falconiformes Accipitridae Chondrohierax uncinatus gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Urracas Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae Bagre	Decapoda	Penaeidae		Camarón		
Falconiformes Accipitridae Chondrohierax uncinatus gancho Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Urracas Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Aridae Bagre	Didelphimorphia	Didelphidae	Didelphis spp	Tacuazín		
Ostreoida Ostreidae Cassostrea spp Ostión Passeriformes Urracas Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	<u> </u>		Chondrohierax	Gavilán Pico de		
Passeriformes Icteridae Zanates Passeriformes Mimidae Mimus spp Cenzontle Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Icterus spp Chorcha norteña Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	Falconiformes	Accipitridae	uncinatus	gancho		
PasseriformesIcteridaeZanatesPasseriformesMimidaeMimus sppCenzontlePasseriformesIcteridaeIcterus sppChiltotesPasseriformesIcteridaeClarinerosPasseriformesIcteridaeIcterus sppChorcha norteñaPelecaniformesArdeidaeArdea albaGarzaPerciformesCentropomidaeRobaloPerciformesSciaenidaeCurvinaPiciformesPicidaeMelanerpes sppCarpinteroPulmonataHelicidaeHelix spp.CaracolesSiluriformesAriidaeBagre	Ostreoida	Ostreidae	Cassostrea spp	Ostión		
PasseriformesMimidaeMimus sppCenzontlePasseriformesIcteridaeIcterus sppChiltotesPasseriformesIcteridaeClarinerosPasseriformesIcteridaeIcterus sppChorcha norteñaPelecaniformesArdeidaeArdea albaGarzaPerciformesCentropomidaeRobaloPerciformesSciaenidaeCurvinaPiciformesPicidaeMelanerpes sppCarpinteroPulmonataHelicidaeHelix spp.CaracolesSiluriformesAriidaeBagre	Passeriformes			Urracas		
Passeriformes Icteridae Icterus spp Chiltotes Passeriformes Icteridae Clarineros Passeriformes Icteridae Icterus spp Chorcha norteña Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	Passeriformes	Icteridae		Zanates		
PasseriformesIcteridaeClarinerosPasseriformesIcteridaeIcterus sppChorcha norteñaPelecaniformesArdeidaeArdea albaGarzaPerciformesCentropomidaeRobaloPerciformesSciaenidaeCurvinaPiciformesPicidaeMelanerpes sppCarpinteroPulmonataHelicidaeHelix spp.CaracolesSiluriformesAriidaeBagre	Passeriformes	Mimidae	Mimus spp	Cenzontle		
PasseriformesIcteridaeIcterus sppChorcha norteñaPelecaniformesArdeidaeArdea albaGarzaPerciformesCentropomidaeRobaloPerciformesSciaenidaeCurvinaPiciformesPicidaeMelanerpes sppCarpinteroPulmonataHelicidaeHelix spp.CaracolesSiluriformesAriidaeBagre	Passeriformes	Icteridae	Icterus spp	Chiltotes		
Pelecaniformes Ardeidae Ardea alba Garza Perciformes Centropomidae Robalo Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	Passeriformes	Icteridae		Clarineros		
PerciformesCentropomidaeRobaloPerciformesSciaenidaeCurvinaPiciformesPicidaeMelanerpes sppCarpinteroPulmonataHelicidaeHelix spp.CaracolesSiluriformesAriidaeBagre	Passeriformes	Icteridae	Icterus spp	Chorcha norteña		
Perciformes Sciaenidae Curvina Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	Pelecaniformes	Ardeidae	Ardea alba	Garza		
Piciformes Picidae Melanerpes spp Carpintero Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	Perciformes	Centropomidae		Robalo		
Pulmonata Helicidae Helix spp. Caracoles Siluriformes Ariidae Bagre	Perciformes	Sciaenidae		Curvina		
Siluriformes Ariidae Bagre	Piciformes	Picidae	Melanerpes spp	Carpintero		
<u> </u>	Pulmonata	Helicidae	Helix spp.	Caracoles		
Squamata Boidae Boa constrictor Mazacuata	Siluriformes	Ariidae		Bagre		
	Squamata	Boidae	Boa constrictor	Mazacuata		

Squamata	Viperidae	Agkistrodon	Cantil de agua	
Oquamata	Viperidae	bilineatus	Caritii de agua	
Squamata	Viperidae	Bothrops atrox	Barba amarilla	
Squamata	Colubridae	Drymarchon	Zumbadoras	
Oquamata	Colubilidae	melanurus	Zumbadoras	
Squamata	Colubridae	Oxybelis aeneus	Bejuquillo	
Veneroida			Almejas	

Fuente: Consejo Nacional de Áreas Protegidas, 2006

En el cuadro anterior se hace mención de las especies de fauna que se encuentran dentro del área de la cuenca, algunas de estas se encuentran dentro del listado de la CITES, es un acuerdo internacional que tiene por finalidad velar por que el comercio internacional de especímenes que no constituya una amenaza. La CITES incluye tres apéndices, según el grado de protección que se necesite: Apéndice I, Apéndice II y Apéndice III. En el Apéndice I se encuentran las especies en peligro de extinción. En el Apéndice II se encuentran especies que no se encuentran en peligro de extinción pero que requiere un control por su comercio. En el Apéndice III son especímenes que se encuentran protegidas al menos en un país y requieren de control para su comercio. Los especímenes que no se encuentran dentro de este listado se encuentran fuera del alcance de su comercialización, pero representan un papel importante dentro del ecosistema. Algunos de los especímenes es difícil de observar por problemas de la deforestación, caza ilícita y/o el comercio que presentan, el venado es un claro ejemplo de las especies en peligro en extinción, no solamente para el área de estudio sino a nivel nacional.

5.1.7.1 Problemas Ambientales

Guatemala es un país que actualmente se encuentra en un momento crítico donde la mayor parte de su biodiversidad se está perdiendo, sin mencionar las pérdidas que se han obtenido, haciendo un análisis comparativo de años atrás; siendo un problema que se encuentra a nivel mundial. Para el área de la cuenca este tipo de problemas no son la excepción, los aspectos geológicos, climáticos y topográficos presentan todas las

condiciones adecuadas en donde las personas se encuentran anuentes a una amenaza de manera directa o indirecta, afectando la calidad de vida de las personas y al desarrollo del país.

En el área se encuentran diferentes problemas ambientales, siendo de tipo geológicos, hidrometeorológicas, socio-naturales y antrópicas. Los problemas se presentan dependiendo de los aspectos mencionados con anterioridad, para el caso de los municipios de Retalhuleu y San Marcos los fenómenos de tipo hidrometeorológico, socio-naturales y antrópicas afectan mayormente, mientras en Quetzaltenango los de tipo socio-naturales, geológicas y antrópicas son de mayor recurrencia.

Comenzando con las hidrometeorológicas, las sequias es uno de los eventos que afecta los municipios de Retalhuleu, San Felipe, El Asintal, San Sebastián, Champerico y Ocós, perteneciente a San Marcos, las sequias son consideradas con amenazas periódicas, a pesar de no ser tan recurrentes anualmente o se presentan con la misma intensidad, causa grande daños, en especial al sector agrícola. Otro de los eventos hidrometeorológicos que afecta a la zona son las inundaciones, siendo este una amenaza frecuente, las inundaciones pueden ser consideras pluviales, ocurre por las intensas lluvias, y fluviales, se genera cuando el agua de los ríos se desborda (Centro Nacional de Comunicaciones, 2015).

Las inundaciones es un fenómeno en la que la mayoría de los municipios se encuentran afectados, siendo Retalhuleu, Nuevo San Carlos, El Asintal, San Sebastián, Champerico, Colomba Costa Cuca, El Palmar, Flores Costa Cuca, Génova, San Martin Sacatepéquez y Ocós. A diferencia de los municipios pertenecientes a Quetzaltenango con los de Retalhuleu y San Marcos, se encuentran menos afectados y son pocas y pequeñas comunidades o aldeas, a comparación, el número de personas afectadas es menor.

Cuando se habla de amenazas socio-naturales se encuentra la deforestación por el aumento de la frontera agrícola, incendios forestales por no tener control de las quemas que se realiza por la agricultura, tala y extracción de madera por ser una las

principales fuentes de energía en los hogares donde aún no disponen de gas propano. Este presenta mayor amenaza en la parte alta de la cuenca, siendo las zonas donde se encuentra mayor cobertura forestal, los municipios que se encuentran afectados son Coatepeque, Colomba Costa Cuca, El Palmar, Flores Costa Cuca, Génova y San Martin Sacatepéquez, estos no han logrado causar daños muy severos, pero lo cual puede repercutir con el pasar del tiempo, afectando a la sociedad y perdiendo diversidad flora como de fauna.

Otro de los fenómenos por los que se encuentra afectado los municipios mencionados con anterioridad, son los de tipo geológica, la actividad volcánica de los volcanes de Santiaguito y Santa María, deslizamientos y derrumbes y erosión de los suelos, esto por la topografía en la que se ubican los diferentes municipios y las prácticas inadecuadas de conservación.

Uno de los principales problemas ambientales, por encontrarse en los municipios del área de estudio, es la contaminación por desechos sólidos y aguas residuales, con anterioridad en la sección de los servicios se hace mención del problema del manejo de los desechos sólidos, no se hace un uso adecuado y la mayoría de las personas no cuentan con este servicio, depositando en lugares no apropiados, al igual con las aguas servidas, no se cuentan con un servicio adecuado, por lo que la mayor contaminación se da en las fuentes de agua o cerca de los hogares.

5.2 Modelaciones

5.2.1 Modelación Hidrológica

Para la modelación hidrológica, se obtuvo como primer producto las subcuencas que conforman la cuenca del Ocosito, teniendo un área total de 858.31 Km². Las subcuencas se conformaron en base de las corrientes de la cuenca. Algunas de las corrientes se encuentra conformada por dos áreas, considerando como si fuera una sola subcuencas, HEC-GeoHMS realiza esta modificación considerando que sea una corriente de una longitud significativa.

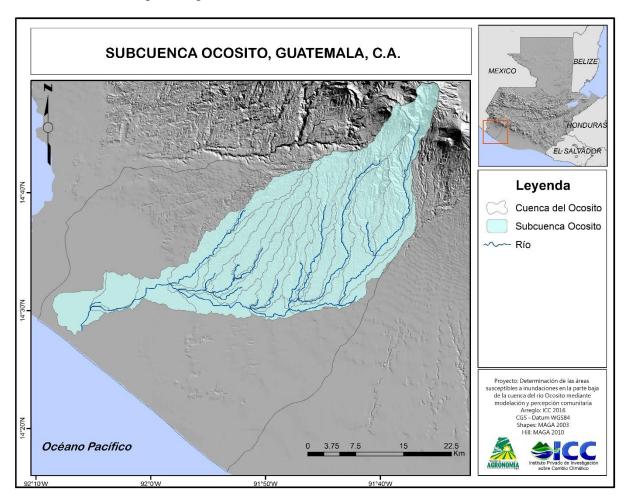


Figura 41 Subcuenca Ocosito

En la figura 30 se logra apreciar la distribución del número de curva para la cuenca del río Ocosito indicando las zonas permeables e impermeables.

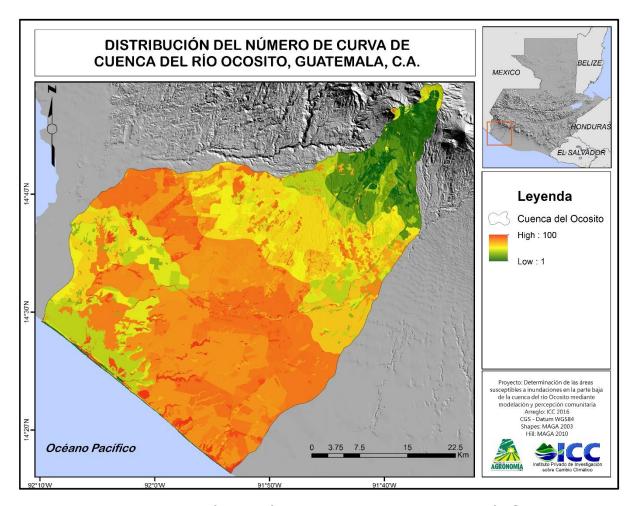


Figura 42 Distribución del número de curva de cuenca del río Ocosito

Los valores se encuentre de 0 a 100; donde una CN = 0 no tiene escurrimiento siendo las partes que se encuentran las tonalidades de color verde limón y una CN = 100 es una área impermeable y toda la precipitación genera escorrentía siendo las partes donde se observa de color naranja a rojo (Havrylenko et al., 2006).

Cuadro 32 Clasificación de los usos de la tierra según la clasificación de NRCS y software ArSwat y número de curva correspondiente al tipo de suelo

LUValue	Clasificación NRCS + ArSwat	Α	В	С	D
1	Agua	92	92	92	92
2	Arroz	62	73	81	84
3	Banano/Plátano	56	72	80	85
4	Bosque coníferas	25	55	70	77
5	Bosque latifoliadas	45	66	77	83
6	Bosque manglar	45	66	77	83
7	Bosque mixto	36	60	73	79
8	Bosque, condiciones hidrológicas medias	43	65	76	82
9	Cacao	45	66	77	83
10	Café	45	66	77	83
11	Café y Macadamia	45	66	77	83
12	Caña de azúcar	67	77	83	87
13	Coco	45	66	77	83
14	Cultivo en línea pobre	65	76	84	88
15	Cultivo en línea, condiciones hidrológicas buenas	72	81	88	91
16	Espacio abierto, condiciones hidrológicas buenas	39	61	74	80
17	Hule	45	66	77	83
18	Humedal con vegetación	49	69	79	84
19	Palma africana	45	66	77	83
20	Papaya	45	66	77	83
21	Piña	45	66	77	83
22	Plantación forestal	57	73	82	86
23	Pradera pantanosa	49	69	79	84
24	Prado	49	69	79	84
25	Ranchos, construcciones, vías de comunicación y	59	74	82	86
	parcelas circundantes				
26	Suelo desnudo	77	86	91	94

27	Suelo impermeable	93	93	93	93
28	Vegetación arbustiva baja (matorral y/o guamil)	39	61	74	80
29	Vivero	67	78	85	89
30	Zona urbana, 65% impermeable	77	85	90	92

La tabla de atributos del número de curva para la cuenca del río Ocosito se utilizó la clasificación de los diferentes usos de la tierra y tipos de suelos que se encuentran en el cuadro 32.

El modelo base de la cuenca del río Ocosito según HEC-HMS se logra observar en la figura 31.

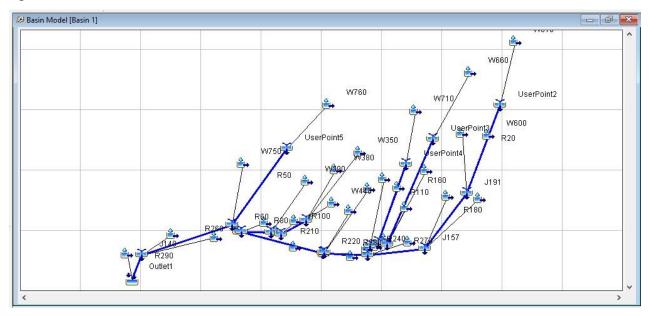


Figura 43 Modelo base de la cuenca del río Ocosito según HEC-HMS

El modelo base para Ocosito cuenta con 33 subcuencas, 18 ríos, 14 puntos de intersección entre los ríos y 1 punto de salida (desembocadura), siendo un total de 66 aspectos que considero el HEC-HMS. Esto representa valores de 66 caudales en diferentes puntos de Ocosito, como se logra observar en la figura 44.

lobal Summary Results for Run "Ocosito	o100.0"				e e
	Proje	ct: Project 2 Simulation Run: Oco	sito 100.0		
Show Elements: All Elements	Start of Run: 013a End of Run: 033a Compute Time:DATA	n2011, 00:00 Meter	Model: Basin 1 orologic Model: TR 100 rol Specifications:Control	Sorting: Hydrol	a min
					ogic V
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)	
W760	27.9252	29.4	01Jan2011, 15:18	51.31	
N710	39,72195	23.2	01Jan2011, 17:26	26,87	
V660	49.136	12.4	01Jan2011, 22:16	9.41	
V610	44.637	11.8	01Jan2011, 19:14	10.31	
V580	37.590	203.9	01Jan2011, 20:44	272.78	
N570	11.424825	87.4	01Jan2011, 13:24	195.03	
V560	0.0389250	1.0	01Jan2011, 11:00	310.45	
N550	16.898	24.6	01Jan2011, 16:24	75.10	
N540	28.782	221.8	01Jan2011, 17:48	301.49	
W530	1.7296	3.9	01Jan2011, 12:22	112.81	
N520	1.8468	2.9	01Jan2011, 13:14	73.84	
W510	20.747	31.6	01Jan2011, 14:54	75.59	
W500	1.1551	2.3	01Jan2011, 12:22	94.27	
W490	23.338	110.0	01Jan2011, 13:28	128.87	
V480	25.090875	26.1	01Jan2011, 17:52	53.73	
N470	32.412	291.4	01Jan2011, 15:34	318.41	
N460	1.714275	33.5	01Jan2011, 11:52	311.53	
W450	6.8789	81.8	01Jan2011, 13:34	304.10	
W440	27.594	144.3	01Jan2011, 14:06	158.38	
W430	2.23515	34.4	01Jan2011, 12:40	272.91	
W420	35.313	220.1	01Jan2011, 19:52	295.52	
W410	14 224	164.6	013an2011 13:04	271 34	-

Figura 44 Resumen de resultados de modelación hidrológica

5.2.2 Modelación Hidráulica

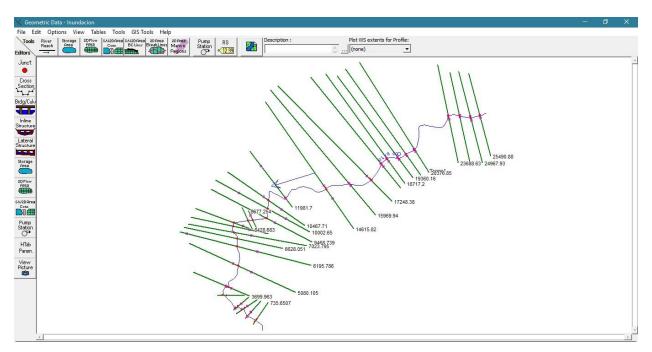


Figura 45 Modelo hidráulico en uno de los tramos del río Ocosito en HEC-RAS

Para el cauce principal de Ocosito se realizaron proyecciones de diferentes tramos; el río cuenta con la peculiaridad que sufre un cambio de dirección del flujo de agua hacia la desembocadura, haciéndola diferente de las demás cuencas en la zona. Los tramos a considerar para Ocosito fueron la parte baja donde se encuentra la desembocadura hacia el océano y un tramo donde se ubica un meandro, el cual es donde cambia la dirección del río.

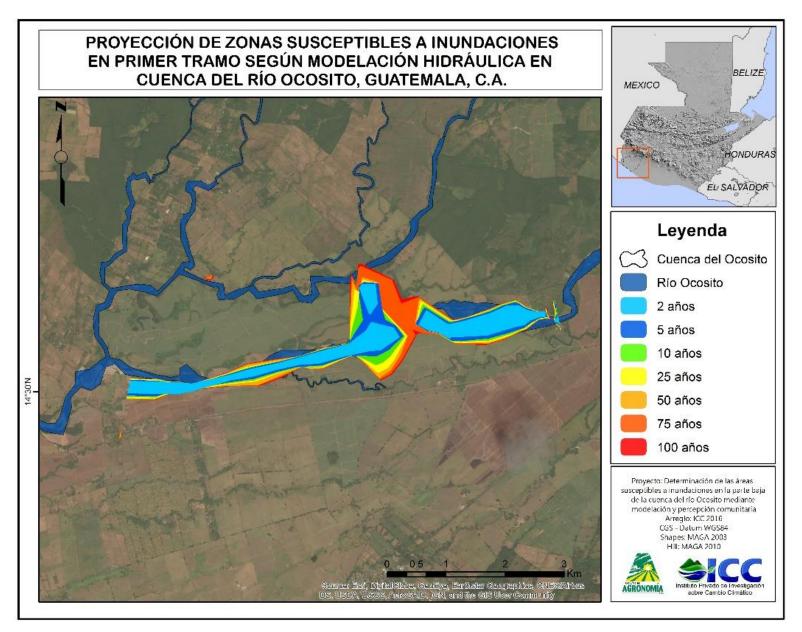


Figura 46 Proyección de las zonas susceptibles a inundaciones en primer tramo según modelación hidráulica en cuenca del río

Ocosito

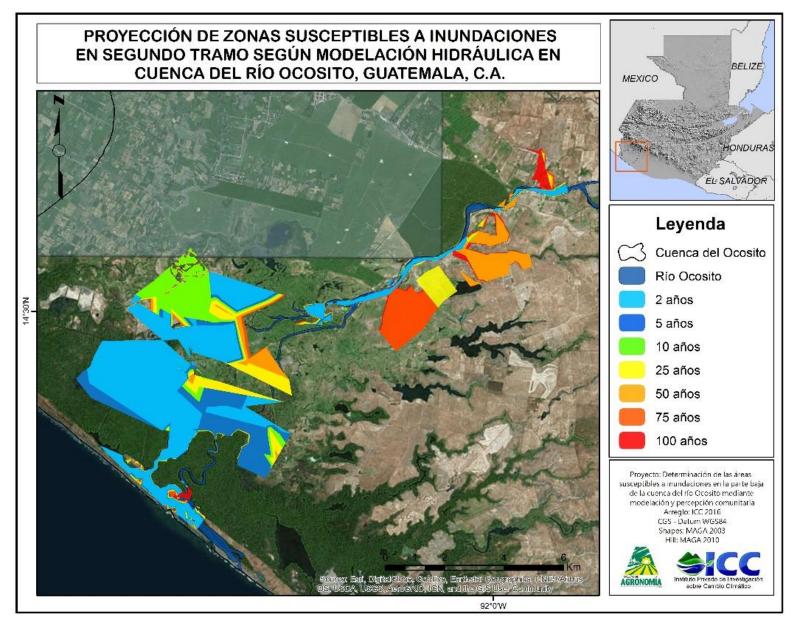


Figura 47 Proyección de las zonas susceptibles a inundaciones en segundo tramo según modelación hidráulica en cuenca del río Ocosito

Los colores celeste y turquesa representan las zonas que serán afectadas en tiempos de retorno de 2 y 5 años, considerando eventos recurrentes que se presentan en estas zonas. De color verde representa áreas con una recurrencia de 10 años, las áreas amarillas son con una recurrencia de 25 años, naranja claro y naranja oscuro son áreas susceptibles en periodos de 50 y 75 años y las zonas de color rojo son en un periodo de 100 años.

5.3 Percepción Comunitaria

Los perfiles históricos de las comunidades determinan como ha sido la dinámica de la población, como han enfrentado las emergencias, las capacidades instaladas ante emergencias y los aspectos que necesitan reforzar.

Las comunidades que recibieron la capacitación del tema de gestión de riesgos fueron

- Villa Flores, Coatepeque
- El Pomal, Coatepeque
- Chiquirines, Coatepeque
- Santa Fe, Coatepeque
- Los Encuentros, Coatepeque
- Madronales, Ocós
- Valle Lirio, Retalhuleu
- La Verde, Retalhuleu
- Caballo Blanco, Retalhuleu

Los efectos que han tenido la mayoría de las personas, son similares por las condiciones en las que se encuentran, ubicación, aspectos biofísicos, actividades productivas y sociales. Se contara con antecedentes de algunas de las comunidades mencionadas con anterioridad.

Villa Flores

Cuadro 33 Perfil histórico de la comunidad de Villa Flores, Coatepeque

Año	Descripción

	Recibía el nombre de Finca Las Flores, la cual pertenecía al
Antes de 1966	Gobierno.
4000	Finca Las Flores se lotifica en parcelas, la cual una de ellas recibió
1966	el nombre San Vicente Pacaya.
1985	La comunidad de Villa Flores se independiza de San Vicente
1903	Pacaya.
1987	Construcción de la primera escuelita, la cual es albergue para la
1907	comunidad.
1998	Tormenta Mitch, las intensas Iluvias provocaron inundaciones
1990	haciendo evacuar a la población.
2000	Instalación de luz eléctrica en la comunidad.
2005	La población nuevamente debe ser evacuada por inundaciones a
2003	causa de la tormenta Stan.
2008	La comunidad cuenta con mejores vías de acceso, las calles fueron
2000	asfaltadas.
2010	La Tormenta Agatha provoco inundaciones, haciendo que las
2010	personas nuevamente evacuaran sus hogares.
2010	Las inundaciones continuaban a causa de la Tormenta Alex.
2014	Construcción de cancha polideportiva, considerada como un
2017	albergue provisional.

Los Encuentros

Cuadro 34 Perfil histórico de la comunidad de Los Encuentros, Coatepeque

Año	Descripción
1946	La comunidad es fundada por el desmembramiento de una de las
1940	Fincas Nacionales.
1946	En las afueras de la Finca se encontraban instaladas 30 viviendas,
1940	las cuales pasaron a ser las primeras viviendas de la comunidad.
1965	Se cuenta con pocos caminos de terracería, dificultad para transitar.
1976	Construcción de la primera escuelita.
1982	Construcción de Iglesia Católica.
1991	Construcción del Salón Comunal.

4004	
1991	Construcción del Centro de Salud
4000	Elaboración de diques de bananera facilitando el curso del agua
1996	anto riocao a inundaciones
	ante riesgo a inundaciones.
2001	Establecimiento de energía eléctrica en la aldea.
-	La Tormenta Stan cubrió de agua toda la comunidad por el
	-
2005	desbordamiento del río Ocosito, la población debió ser evacuada
	algunos albergues o comunidades aledañas.
	algunos alborgaes e comunidades alcuando.
2222	Instalación del tanque de agua, el cual se encuentra sin
2006	funcionamiento.
	Turicionamiento.
2010	Las intensas lluvias de la Tormenta Agatha provoco inundaciones.
	La Tormenta Tropical Alex provoco aumento del nivel freático, la
2010	za remena rrepisar ruen prevese admente del miter medice, la
	población nuevamente debe ser evacuada.
	La Depresión Tropical 12-E hizo que las personas evacuaran el
2011	
	lugar por las inundaciones en sus hogares.

• Valle Lirio

Cuadro 35 Perfil histórico de la comunidad de Valle Lirio, Retalhuleu

Año	Descripción
1987	Finca de Gobierno llamada Valle Lirio, eran tierras productivas de
1907	citronela y ganaderas.
1987	Finca Valle Lirio, fue entrega a 150 familias beneficiarias.
1987-1988	Las familias trabajan en conjunto para beneficiarse de una manera
1907-1900	equitativa.
1988	Las familias siembran ajonjolí por primera vez, sustituyéndolo por la
1900	citronela.
1989	Repartición de tierras para cada una de las familias y beneficiarse
1909	individualmente.
1989	Construcción de la primera escuelita.
1989	Construcción de Juzgado Auxiliar.
4000	Primera inundación en Valle Lirio, provocando pérdidas totales en
1989	los cultivos.
1989	Segunda inundación en Valle Lirio, Provocando nuevamente

	pérdidas totales en los cultivos.
1990	Comienzan las gestiones para la luz eléctrica.
1990	Se otorga un título provisional a todos los propietarios de Valle Lirio.
1995	Inauguración de la luz eléctrica
2005	La Tormenta Stan ocasiona destrozos, destruyendo el salón comunal e inundando todo el caserío.
2007	Construcción del nuevo Salón Comunal, el cual es albergue para la comunidad.
2010	La Tormenta Agatha provoca inundaciones en toda la comunidad, haciendo evacuar a toda la población.
2010	La Tormenta Tropical Alex provoco aumento del nivel freático, la población nuevamente debe ser evacuada.
2011	La Depresión Tropical 12-E hizo que las personas evacuaran el lugar por las inundaciones en sus hogares.

• El Pomal

Cuadro 36 Perfil histórico de la comunidad de El Pomal, Coatepeque

Año	Descripción
1977	Tormenta Fifi ocasiona inundaciones por la saturación de agua en el
	suelo.
4090	El Pomal se independizo de Los Encuentros, la cual fue fundada por
1980	8 familias.
1980-1981	Se presentó una fuerte sequía ocasionando grandes pérdidas en la
1900-1901	agricultura.
1988	Construcción de la primera escuelita.
1989	Saturación de agua en los suelos provocando pérdidas totales en las
1909	cosechas de las familias.
1994	Una época con escases de agua de lluvia, y una sequía muy
1994	pronunciada.
1998	Instalación de luz eléctrica.
1009	La tormenta Mitch, provoco un desbordamiento del río Ocosito y
1998	Pacaya causando inundaciones de hasta 1 metro de altura.

2005	Nuevamente ocurre un desbordamiento del río Ocosito y Pacaya a causa de la tormenta Stan, evacuando a toda la población.
2010	La tormenta Agatha ocasiono un aumento del nivel freático, la población evacua el lugar a zonas de albergue o comunidades aledañas.
2010	La tormenta tropical Alex ocasiono inundaciones, la población nuevamente debe ser evacuada.
2011	La Depresión Tropical 12-E provoco inundaciones, las personas debieron evacuar.

Una gran parte de la población se dedica a la agricultura, como medio de subsistencia o para exportación. Los principales cultivos se encuentran el ajonjolí, maíz y plátano. En cuadro siguiente se encuentra un promedio de la inversión para un área de una manzana, implica semilla o plantilla, abonos, fertilizantes, mano de obra, maquinaria.

Cuadro 37 Inversión para el área de una manzana

Cultivo	Inversión
Maíz	Q 4,500.00
Ajonjolí	Q 4,000.00
Plátano	Q 18,000.00

Las áreas de mayor riesgo a inundaciones son por inundaciones fluviales e inundaciones pluviales, estas últimas provocan un amento del manto freático ocasionando las denominadas "Llenas" ocurre cuando nace agua del suelo, como suele decir o identificar la población. En eventos extremos como Mitch, Stan, Agatha, 12-E entre otros las pérdidas son totales para el caso del maíz y ajonjolí. Con precipitaciones continuas las personas obtienen perdidas entre 40% y 60%. Las ganancias que logran obtener de una manzana para una cosecha, considerando que sea una buena temporada, se plantea en el cuadro 38.

Cuadro 38 Ganancias obtenidas en una cosecha para el área de una manzana

Cultivo	Ganancias
Maíz	Q 500.00
Ajonjolí	Q 800.00
Plátano	Q 5,400.00

Figura 48 Grafica de estimación económica de los principales cultivos

El plátano es el principal cultivo de exportación en las comunidades, la cual se adapta a las condiciones ambientales del lugar y siendo más resistente ante las inundaciones, aunque pude representar una perdida en ocasiones cuando se presenta un cambio radical de intensas lluvias a días muy soleados.

La implementación de quineles por el sector agroindustrial, han ayudado a disminuir el impacto por el desbordamiento de los ríos, Ocosito, Pacaya y Naranjo, quienes son los que mayor impacta en la parte baja del Ocosito y las intensas precipitaciones. Con la

variabilidad climática que se ha presentado en los últimos años, lluvias más intensas y sequias más prolongadas, han afectado a la sociedad en diferentes aspectos, las medidas de mitigación, tales como quineles, han disminuido la capacidad para drenar las corrientes de agua, obligado a implementar nuevas medidas o realizar mejoras.

Las principales comunidades afectadas por las inundaciones son Las Cruces, Granada, Valle Lirio, El Esfuerzo, Mico Triste, El Lagartero, Bebedero, El Chico, El Palmo, Las Morenas y El Infiernito, perteneciente a Caballo Blanco, Retalhuleu, Los Encuentros, El Pomal, Santa Fe y San Luis, Quetzaltenango, Chiquirines, El Palmar Dos, El Palmar Uno, Madronales y Poza Honda, San Marcos.

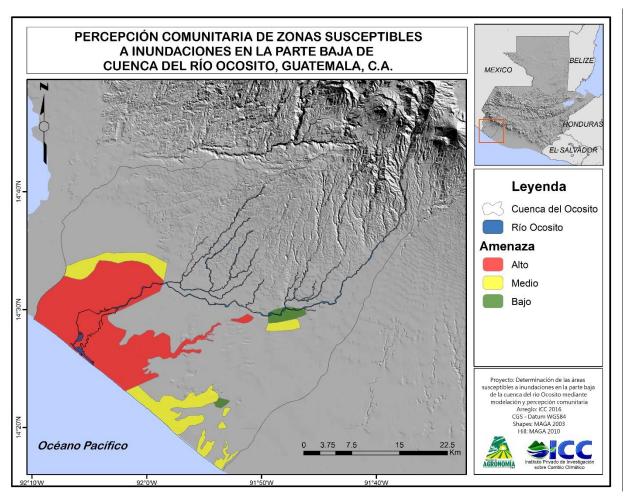


Figura 49 Percepción comunitaria de zonas susceptibles a inundaciones en la parte baja de la cuenca del río Ocosito

En la figura 49 se logra identificar el área de susceptible a inundaciones, los aspectos a considerar según la población, es la altura que logra alcanzar en sus hogares, cultivos, la duración de filtración o salida de agua y las pérdidas que genera, principalmente a los cultivos. La zona roja representa un alto riesgo a inundaciones, son áreas en donde se encuentra ubicados los manglares o pampas, ante los problemas de la deforestación y el cambio climático, han disminuido la capacidad de protección ante las inundaciones. El riesgo medio, son áreas en donde la capacidad de los suelos para la filtración del agua es acelerada, por lo que en cuestión de horas el nivel de agua ha bajado, mientras el riesgo bajo son áreas que muy rara vez a presenciado las inundaciones, y el nivel del agua disminuye en cuestión de horas.

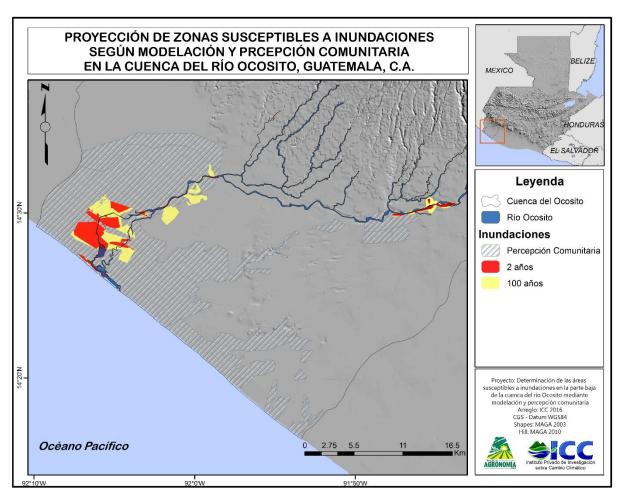


Figura 50 Proyección de zonas susceptibles a inundaciones según modelación y percepción comunitaria

La figura 50 presenta los resultados obtenidos en la percepción comunitaria y la modelación hidráulica, el mapa nos demuestra la validez que representa la percepción de las comunidades para la modelación hidráulica. Cabe mencionar que las modelaciones determinan inundaciones de tipo fluvial mientras la percepción comunitaria determina las inundaciones de tipo fluvial y pluvial, según las experiencias de las personas.

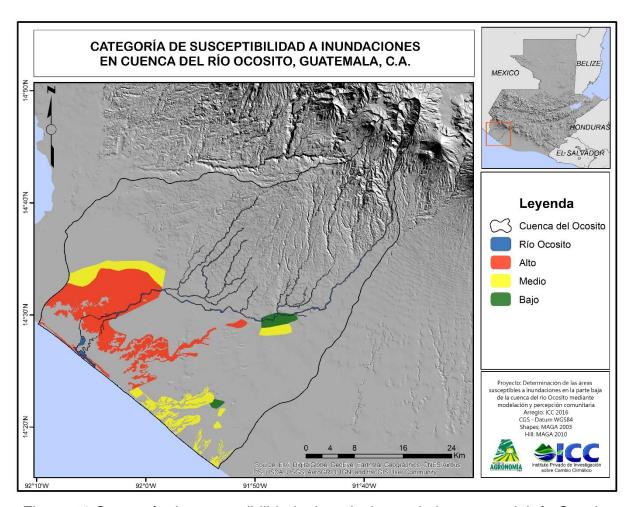


Figura 51 Categoría de susceptibilidad a inundaciones de la cuenca del río Ocosito

La figura 51 indica las áreas susceptibles a inundaciones, determinado por la amenaza (inundaciones) y los usos dentro del área susceptible. El 64% de área es una susceptibilidad alta, el 31% es nivel medio y 5% es una susceptibilidad baja.

Cuadro 39 Área (Km²) susceptible a inundaciones en cuenca Ocosito

158.67
75.73
12.23

6. CONCLUSIONES

- 1) De la caracterización 2016, en aspectos socioeconómicos el crecimiento población desde el 2002 ha sido aproximadamente de 25,000 personas, concentrándose en la parte alta, y relacionando con los diferentes usos de la tierra provocando un sobre uso según la capacidad de los suelos en una cuenca con una densidad baja de 0.60 km/km², categorizada como baja, factores influyentes a la ocurrencia de las inundaciones.
- 2) La modelación hidráulica proyecta las áreas susceptible a inundaciones de tipo fluvial, para el caso de Ocosito se estima áreas susceptibles en periodos de retorno de 2 a 5 años entre 18 y 23 Km², mientras que para un periodo de retorno de 100 años presenta un área susceptible cerca de los 40 Km²
- 3) Las personas identificaron las zonas susceptibles a inundaciones según la recurrencia con la que se enfrentan y el grado de afectación, clasificando zonas como alto, medio y bajo, donde las áreas de alta susceptibilidad representan 158.67 Km², las áreas de nivel medio representan 75.73 Km², y bajo representan 12.23 Km², y donde el maíz y el ajonjolí son los cultivos de mayor vulnerabilidad ante las inundaciones obteniendo perdidas mayores al 50%.

7. RECOMENDACIONES

- La información recopilada de aspectos socioeconómicos y biofísicos debe ser actualizada cada cierto tiempo, aproximadamente 5 años.
- 2) Para la elaboración de la modelación hidrológica se requiere el registro de datos de precipitación de las estaciones meteorológicas que se encuentren dentro o lo suficientemente cerca del área de estudio, deben contar con la mayor cantidad de registro de años para proyectar en los diferentes tiempos de retorno, el cual nos da una precisión en los resultados.
- Disponer de una base de datos de caudales, siendo de precisión para la modelación hidráulica.
- 4) Por la precisión de la modelación de hidráulica, según la base de datos que se utilice, la corroboración de la proyección de las área susceptible ante inundaciones se valida con personas que residen en dichas áreas y que han sido afectadas ante este tipo de eventos, el realizar visitas de campo valida este tipo de información generada.
- 5) Implementar usos de tierra alternativos en zonas susceptibles de inundaciones, haciendo uso de especies resistentes a saturación de agua en los suelos.
- 6) Proponer técnicas de mitigación en áreas vulnerables para reducir el impacto negativo de las inundaciones.

8. BIBLIOGRAFÍA

- CENAPRED (Centro Nacional de Prevención de Desastres, MX); Sistema Nacional de Protección Civil. 2009. Inundaciones (en línea). Consultado 28 mar. 2016. Disponible en:http://www.proteccioncivil.gob.mx/work/models/ProteccionCivil/Resource/377/1/i mages/folleto_i.pdf
- Centro Nacional de Comunicaciones, MX. 2015. Lluvias e inundaciones (en línea). Consultado 28 mar. 2016. Disponible en: https://www.unam.mx/medidas-de-emergencia/lluvias-e-inundaciones.
- CONAGUA (Comisión Nacional de Coordinación para el Recurso Agua, GT) 2005. Estudio técnico de base sobre control y monitoreo de crecientes e inundaciones en el área de influencia de las cuencas media y baja, Zanjón Pacayá, Ocós, San Marcos, Guatemala.
- Consejo Municipal de Desarrollo del Municipio de Ocós y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo Municipal del Municipio de Ocós, San Marcos. Guatemala.
- Consejo Municipal de Desarrollo de Nuevo San Carlos, Retalhuleu y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo Nuevo San Carlos, Retalhuleu. Guatemala.
- Consejo Municipal de Desarrollo del Municipio de Retalhuleu y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2011. Plan de Desarrollo Retalhuleu, Retalhuleu. Guatemala.
- CONAP (Consejo Nacional de Áreas Protegidas, GT). 2006. Convetion on International Trade in Endagered Species of Wild Fauna and Flora. Guatemala.
- Cuevas, JG; Litlle, C; Oyarzún, C. 2013. La importancia de la cobertura de vegetación nativa. Redagrícola. Dic 2013.

- FEMA (Federal Emergency Management Agency, US). 2011. CERT (Community Emergency Response Team) Training Materials, Flood (en línea). Consultado 22 de mar. 2016. Disponible en: https://www.fema.gov/es/media-library/assets/documents/27847.
- De la Cruz, JR. 1982. Zonas de vida de Guatemala. Guatemala.
- MEM (Departamento de Desarrollo Energético Ministerio de Energía y Minas. 2012. Autorizaciones definitivas y en trámite para la instalación de centrales hidroeléctricas.
- Eslava Morales, H; Jiménez Espinosa, M; Salas Salinas, MA; García Jiménez, F; Vázquez Conde, MT. 2005. Fenómeno Hidrometeorológicos. *Elaboración de mapas de riesgo por Inundaciones y avenidas súbitas en zonas rurales, con arrastre de sedimentos*.
- UNISDR (Estrategia Internacional para la Reducción de Desastres de las Naciones Unidas, SWI). 2009. Terminología sobre Reducción del Riesgo de Desastres.
- Flores, W; Gómez Sánchez, I. 2010. La gobernanza en los Consejos Municipales de Desarrollo de Guatemala: Análisis de actores y relaciones de poder. Salud Pública, 12(1), 138-150.
- Galindo, JC; Rodas, W; Meléndez, C; Argueta, G. 2010. Evaluación preliminar de los ríos Ocosito y Pacayá en el área cercana a la desembocadura.
- Gil Villalba, S. 2011. Estudio hidrológico del río Coyolate. Instituto Privado de Investigación sobre Cambio Climático. Guatemala.

 2012a. Estudio hidrológico de la cuenca del río Achiguate.	Instituto	Privado
de Investigación sobre Cambio Climático. Guatemala.		

2012b.	Estudio	hidrológico	de	la	cuenca	del	río	Los	Esclavos.	Instituto
2012b. Estudio hidrológico de la cuenca del río Los Esclavos. Privado de Investigación sobre Cambio Climático. Guatemala.										

_____. 2012c. Estudio hidrológico del río María Linda. Instituto Privado de

- Investigación sobre Cambio Climático.
- Guerra, S; Salpec, D; Fuentes, F; Alfaro, G. 2016. Análisis de riesgo por inundaciones en la Aldea Sipacate, La Gomera, Escuintla. Guatemala
- Havrylenko, SB; Damiano, F; Pizarro, MJ. 2006. Estimación del número de curva en la cuenca del río Arreciges. Provincia de Buenos Aires. 12(16). 1-4.
- Hydrologic Engineering Center. nd. HEC-HMS. Consultado 15 abr. 2016. Disponible en: http://www.hec.usace.army.mil/software/hec-hms/
- Hydrologic Engineering Center. nd. HEC-RAS. Consultado 15 abr. 2016. Disponible en: http://www.hec.usace.army.mil/software/hec-ras/
- INE (Instituto Nacional de Estadística, GT). 2002. Características de la población y de los locales de habitación censados. Guatemala.
- IARNA (Instituto de Agricultura Recursos Naturales y Ambiente, GT). 2007. Desigualdad en el acceso a la tierra por municipio. Perfil Ambiental de Guatemala. 1. 219-222.
- INAB (Instituto Nacional de Bosques, GT) 1997. Clasificación de tierras por capacidad de uso.
- UNESCO (United Nations Educational, Scientific and Cultural Organization, UK) 2003. Evaluación de la amenaza por inundación (diapositivas). 45 diapositivas.
- Martínez León, R. 2000. Estudio hidrológico de la cuenca arroyo Guaymas con énfasis en el desarrollo rural. Tesis Ing. Agr. MX. Universidad de Sonora. 14-55 p.
- Consejo Municipal de Desarrollo del Municipio de San Martín Sacatepéquez, Quetzaltenango y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo San Martín Sacatepéquez, Quetzaltenango. Guatemala.
- Maskrey, CA. 1993. Evaluación de la amenaza, la vulnerabilidad y el riesgo "Elementos para el Ordenamiento y la Planeación del Desarrollo". Consultado 23 de feb 2016. Disponible en: http://www.desenredando.org
- MAGA (Ministerio de Agricultura Ganadería y Alimentación, GT). 1995. Estudio

- Prefactibilida Drenaje y Control de Inundaciones La Blanca Ocos. Guatemala.

 ______. 2000. Estudio drenajes superficiales en la unidad de riesgo La Blanca,
 Ocos, San Marcos. Guatemala.

 _____. 2001. Mapa Fisiográfico-Geomorforlógico de la República de Guatemala, a
 escala 1:250,000 (memoria técnica).
- MINEDUC (Ministerio de Educación, GT). 2009. Guatemala, un País con Diversidad Étnica, Cultural y Lingüística (en línea). Guatemala, GT. Consultado 23 jun 2016. Disponible en: http://www.mineduc.gob.gt/digebi/mapaLinguistico.html.
- Consejo Municipal de Desarrollo del Municipio de Flores Costa Cuca, Quetzaltenango y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo Flores Costa Cuca, Quetzaltenango. Guatemala.
- FAO (Food and Agriculture Organization of the United Nations). 2003. Tenencia de la Tierra y Desarrollo Rural (en línea). Consultado 23 jun 2016. Disponible en: http://www.fao.org/docrep/005/y4307s/y4307s05.htm.
- UNESCO (United Nations Educational, Scientific and Cultural Organization, UK). n.d. Cultura (en línea). Consultado 16 jun 2016. Disponible en: http://www.unesco.org/new/es/culture/.
- OMS (Organización Mundial de la Salud). 2015. Saneamiento básico (en línea). Consultado 28 jun 2016. Disponible en: http://www.who.int/topics/sanitation/es/.
- Pérez Sierra, DA. 2012. Simulación Hidrológica e Hidráulica del río San Francisco, Panajachel para la determinación de áreas en riesgo por inundación. Tesis Ing. Civil. Guatemala. USAC (Universidad de San Carlos de Guatemala). 93 p.
- Maza, J; Fernández, P; Vargas, A; Fornero, L; Trípodi, D; Yañez, H. 1995. Estudios hidrológicos e hidráulicos para el ordenamiento territorial de una cuenca. Ingeniería del Agua 2(1): 31-44.

- MSPAS (Ministerio de Salud Pública y Asistencia Social, GT). 2015. Análisis de la situación Epidemiológica de enfermedades no transmisibles (en línea). Consultado 23 jun 2016. Disponible en: http://epidemiologia.mspas.gob.gt/files/Publicaciones/Semanas%20Situacional/asis %20ent%202015.pdf.
- Consejo Municipal de Desarrollo de San Sebastian, Retalhuelu y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo San Sebastian, Retalhuelu. Guatemala.
- Consejo Municipal de Desarrollo de El Asintal, Retalhuelu y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo El Asintal, Retalhuelu. Guatemala.
- Rucks, L; García, F; Kaplán, A; Pond de León, J; Hill, M. 2004. Propiedades físicas del suelo (en línea). Consultado 3 abr 2016. Disponible en: http://orton.catie.ac.cr/cgi-bin/wxis.exe/?lsisScript=BAC.xis&method=post&formato=2&cantidad=1&expresion=mfn=020674.
- SIGAP (Sistema Guatemalteco de Áreas Protegidas, GT). 2015. Listado de áreas protegidas.
- The United Nations; The World Bank. 2010. Peligros naturales, Desastres evitables. La económia de la prevención efectiva.
- Trejo Jenner. AC. 2011. Diversidad Étnico Cultural en la Ciudad de Guatemala (en línea). Guatemala, GT. Consultado 16 jun 2016. Disponible en: http://www.albedrio.org/htm/articulos/a/actj-001.html.
- Consejo Municipal de Desarrollo del Municipio El Palmar, Quetzaltenango y Secretaria de Planificación de la Presidencia Territorial. Dirección Planificación Territorial. 2010. Plan de Desarrollo El Palmar, Quetzaltenango. Guatemala.
- Zuñiga, R; Muñoz, E; Arumí, L. 2012. Estudio de los procesos hidrológicos de la cuenca del río Diguillín. Obras y Proyectos 11. Consultado 17 may 2016. Disponible en: http://www.scielo.cl/pdf/oyp/n11/art07.pdf.

9. ANEXOS

9.1 Fotografías

Figura 52A y Figura 53A. Reunión con personas de comunidades y de la agroindustria bananera del área de estudio

Figura 55A Río Ocosito en época seca, a las cercanías del caserío El Pomal

Figura 54A Punto de intersección del río Nil y Ocosito

Figura 58A y Figura 59A. Río Ocosito en las cercanías de Aldea Las Cruces y a través de plantaciones de Palma Africana, Retalhuleu

Figura 56A Represa en cercanías de plantaciones de Palma Africana, Retalhuleu

Figura 57A Represa en Parque Recreativo Ocosito, Retalhuleu

Figura 62 Reconocimiento de la parte alta Ocosito, cerca de las faldas del Volcán 7 Orejas, Quetzaltenango

Figura 63 Vegetación en las faldas del volcán 7 Orejas, Quetzaltenango

Figura 60 Taller "Gestión de Riesgo de Desastres" a comunidades del área de Ocosito.

Figura 61 Actividad de percepción comunitaria ante el riesgo a inundaciones.

Figura 64 Visita a personas claves para la recopilación de antecedentes de comunidades de Ocosito.

Figura 65 Elaboración de mapeo comunitario con diferentes actores

9.2 Procedimiento HEC-HMS

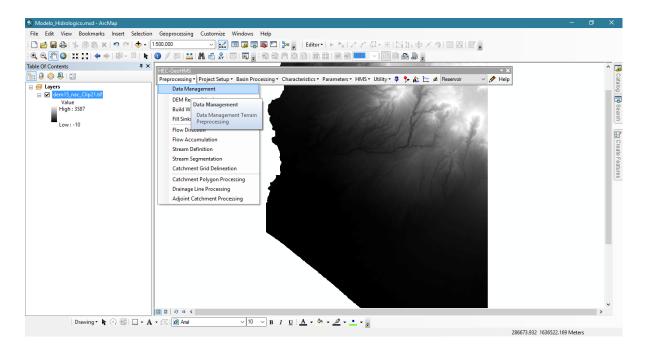


Figura 66 Base de datos de pre procesamiento de HEC-GeoHMS

Partimos del raster DEM 15, actualizamos la base de información en HEC-GeoGMS > Preprocessing > Data Management

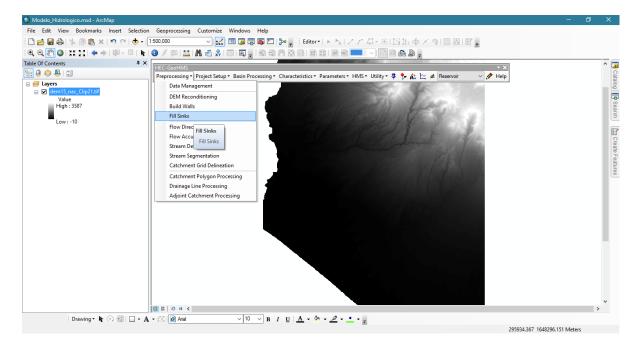


Figura 67A Completar vacíos de HEC-GeoHMS

Continuamos con rellenar irregularidades del área de estudio HEC-GeoGMS > Preprocessing > Fill Sinks.

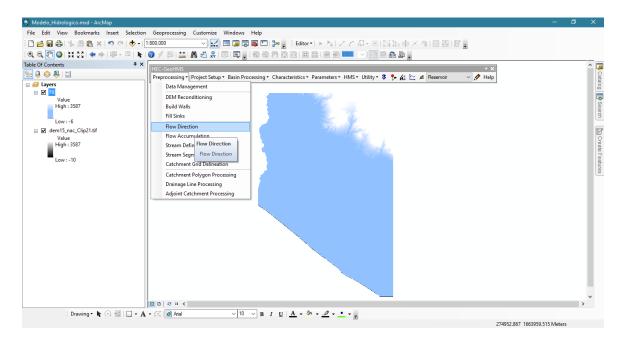


Figura 68 Dirección de flujo de HEC-GeoHMS

Procedemos en calcular la dirección del flujo, HEC-GeoGMS > Preprocessing > Flow Direction.

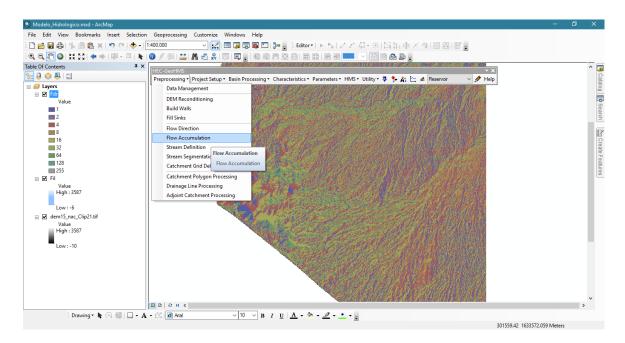


Figura 69 Acumulación de flujos de HEC-GeoHMS

Teniendo identificado las direcciones del flujo, debemos realizar una acumulación de ellos. HEC-GeoGMS > Preprocessing > Flow Accumulation.

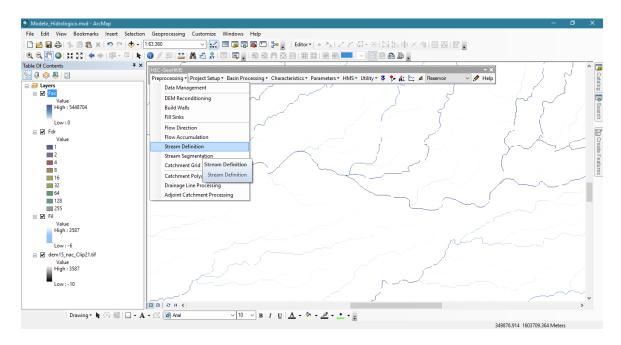


Figura 70 Definición de corrientes en HEC-GeoHMS

Definimos una superficie de drenaje y segmentos de corrientes, HEC-GeoHMS > Preprocessing > Stream Definition y > Stream Segmentation.

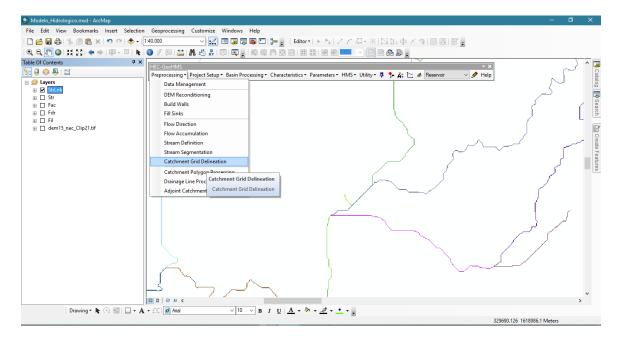


Figura 71 Delimitación de cuencas de HEC-GeoHMS

Luego definimos las subcuencas en un formato raster, HEC-GeoHMS > Preprocessing > Catchment Grid Delineation.

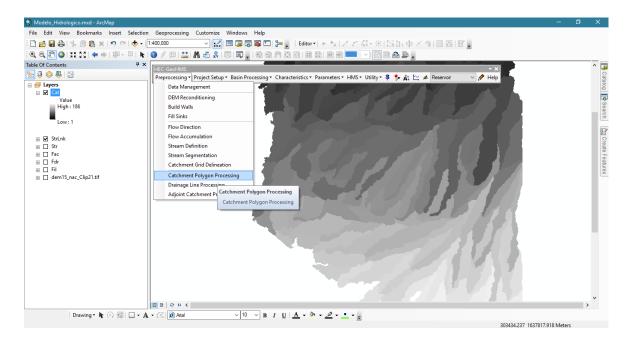


Figura 72 Procesamiento de los polígonos de captación de HEC-GeoHMS

Convertimos en un polígono, HEC-GeoHMS > Preprocessing > Catchment Polygon Processing.

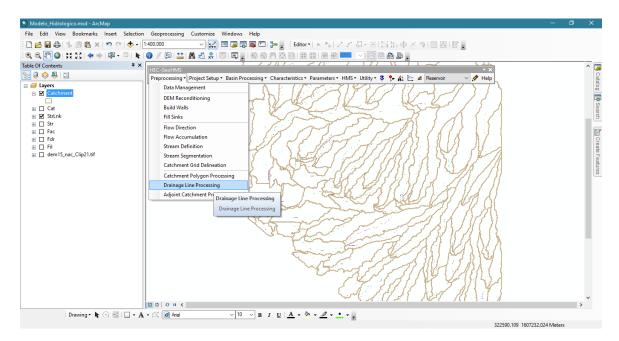


Figura 73 Procesamiento de líneas de drenaje de HEC-GeoHMS

Procedemos con la elaboración de un shape de líneas de cada una de las corrientes, HEC-GeoHMS > Preprocessing > Drainage Line Processing.

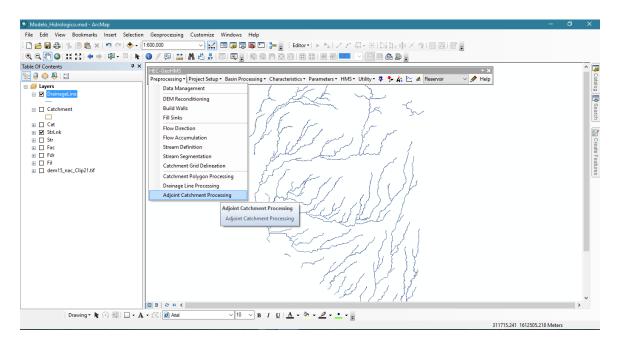


Figura 74 Recopilación de los procesamientos de HEC-GeoHMS

Realizamos la unión de las subcuencas para crear una macrocuenca, HEC-GeoHMS > Preprocessing > Adjoint Catchment Processing.

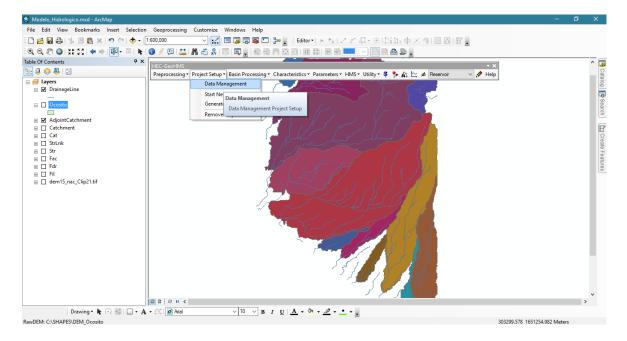


Figura 75 Base de datos de proyecto de HEC-GeoHMS

Nuevamente realizamos un ordenamiento de la información que se generó, HEC-GeoHMS > Project Setup > Data Management.

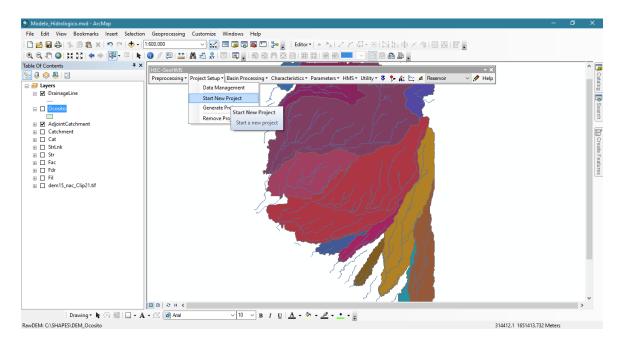


Figura 76 Comenzar un nuevo proyecto de HEC-GeoHMS

Definimos generar un nuevo proyecto, HEC-GeoHMS > Project Setup > Star New Project.

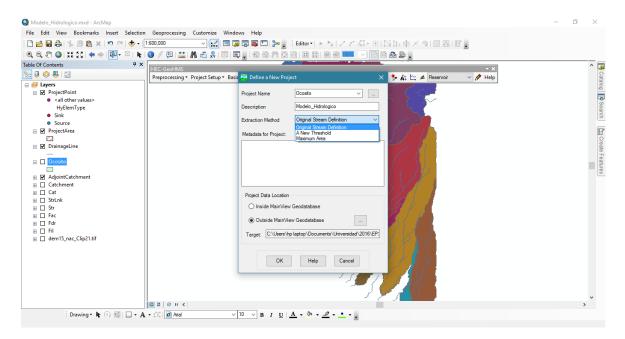


Figura 77 Definir un nuevo proyecto en HEC-GeoHMS

Completamos los campos que solicito el proyecto nuevo, esto para logara proyectar los requerimientos que solicita el software de Hec-HMS.

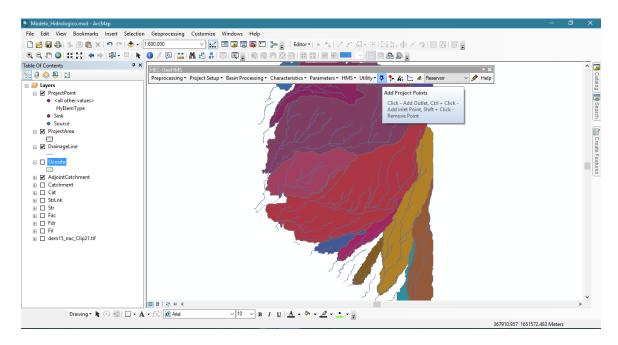


Figura 78 Agregar puntos del proyecto

Se identificó un punto de aforo o la desembocadura, en donde se selecciona el de la subcuenca a estudiar. HEC-GeoHMS > Add Project Points.

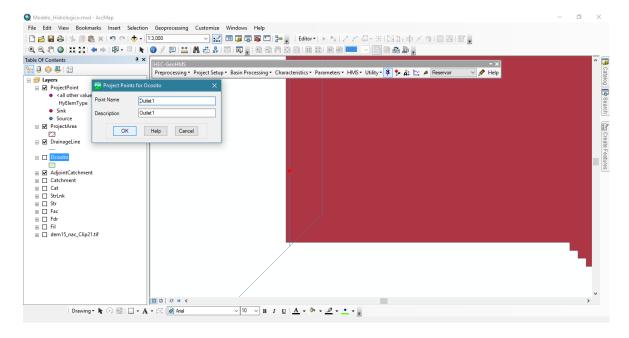


Figura 79 Puntos de Proyecto para Ocosito en HEC-GeoHMS

El punto se coloca sobre un afluente cercano a la desembocadura dentro de la subcuenca, este ubicado fuera de la subcuenca no reconocerá el área de interés.

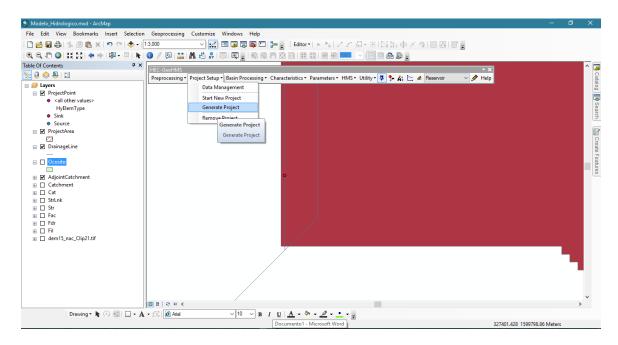


Figura 80 Generar proyecto en HEC-GeoHMS

Establecido el punto dentro de la subcuenca de interés, generamos el proyecto, HEC-GeoHMS > Project Setup > Generate Project.

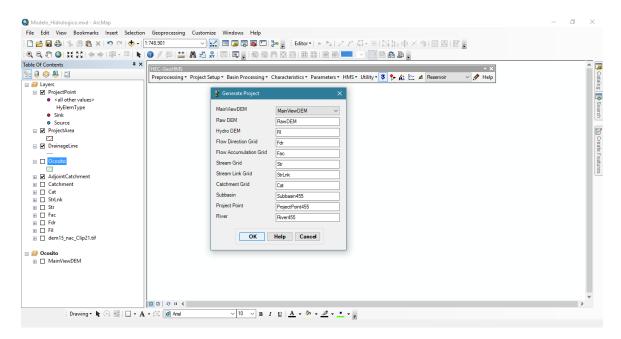


Figura 81 Campos para generación de proyecto en HEC-GeoHMS

Al aceptar el proyecto, muestra una tabla con los campos que requiere, este automáticamente identifico los campos y aceptamos.

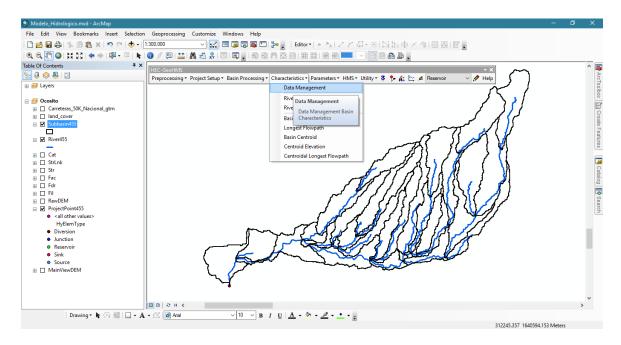


Figura 82 Base de dato de características en HEC-GeoHMS

Actualizamos los datos de la subcuenca, HEC-GeoHMS > Characteristics > Data Management.

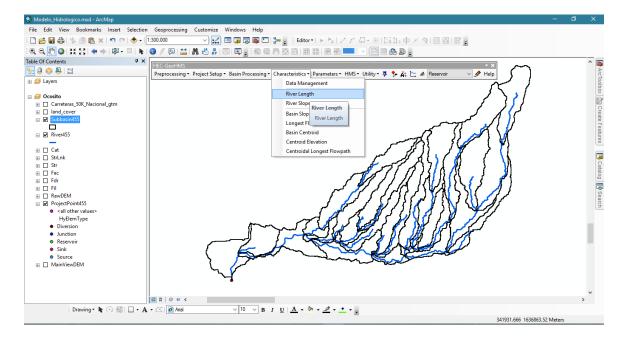


Figura 83 Longitud del río de HEC-GeoHMS

Calculamos la longitud de las corrientes de la subcuenca, HEC-GeoHMS > Characteristics > River Length.

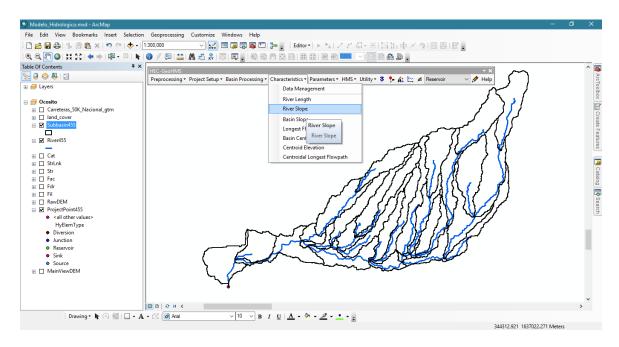


Figura 84 Pendiente del río de HEC-GeoHMS

Calculamos el promedio pendiente, HEC-GeoHMS > Characteristics > River Slope.

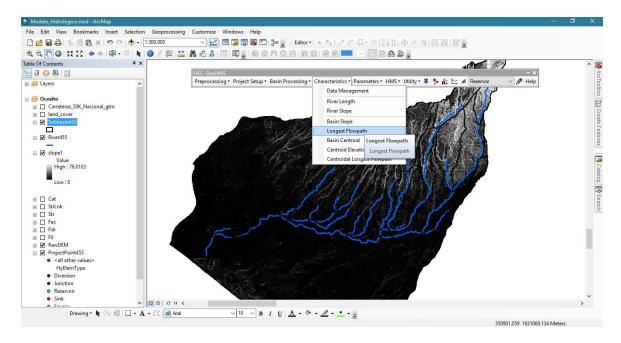


Figura 85 Recorrido de corriente de HEC-GeoHMS

Luego creamos corrientes de mayor longitud dentro de la subcuenca, HEC-GeoHMS > Characteristics > Longest Flowpath.

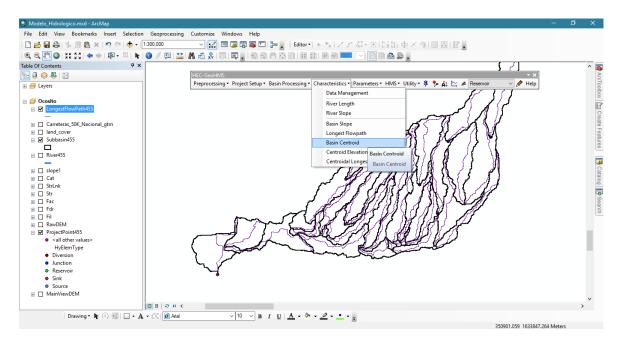


Figura 86 Centro de la cuenca de HEC-GeoHMS

La elaboración de corrientes, son la base para identificar el punto central de cada una de las subcuencas, HEC-GeoHMS > Characterístics > Basin Centroid.

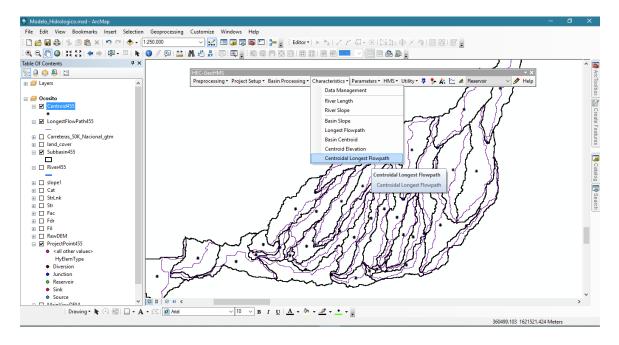


Figura 87 Centro de recorrido de corriente de HEC-GeoHMS

Se calculó la elevación de los puntos y punto central de las corrientes, HEC-GeoHMS > Characteristics > Centroid Elevation y Centroidal Longest Flowpath.

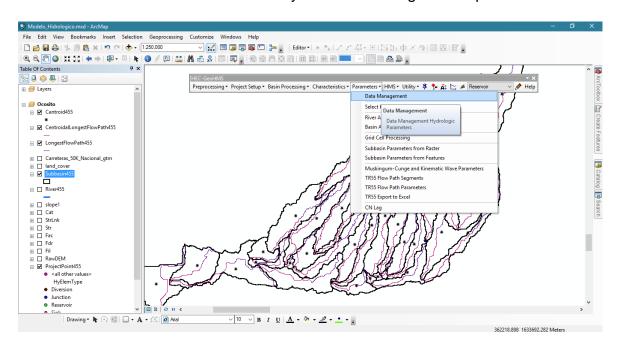


Figura 88A Base de datos de parámetros de HEC-GeoHMS

Actualizamos los datos de parámetros hidrológicos, HEC-GeoHMS > Parameters > Data Management.

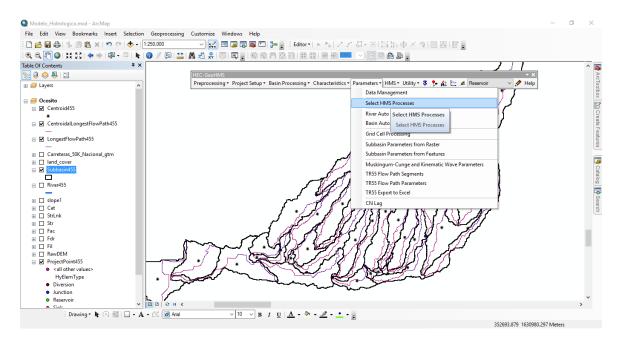


Figura 89 Selección de los procesos de HMS de HEC-GeoHMS

Identificamos los parámetros para procesar en HEC-HMS, en los cuales son las subcuencas y los ríos, HEC-GeoHMS > Parameters > Select HMS Processes.

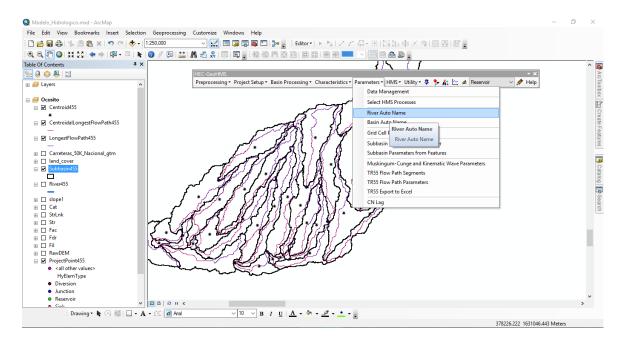


Figura 90 Asignación de nombre al río de HEC-GeoHMS

Los parámetros de interés, se asignaron códigos o nombres, para el caso de los ríos, HEC-GeoHMS > Parameters > River Auto Name.

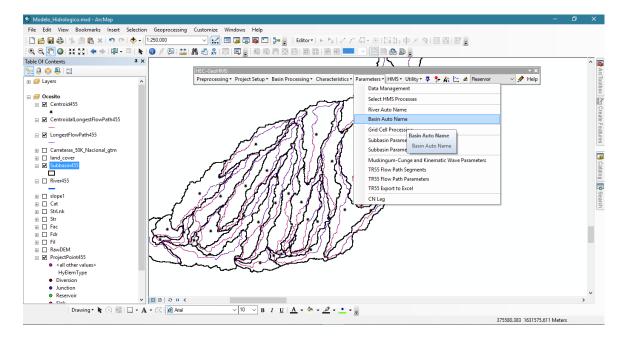


Figura 91 Asignación de nombre a cuenca

En el caso de las subcuencas, HEC-GeoHMS > Parameters > Basin Auto Name.

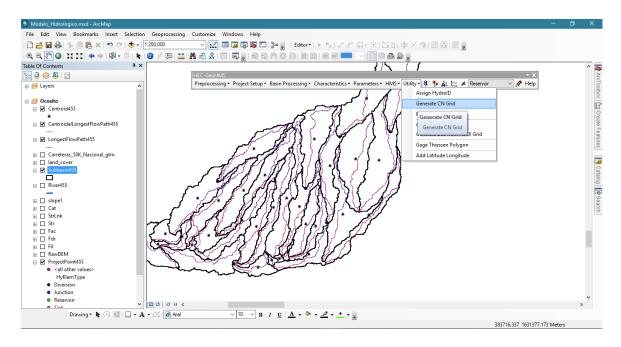


Figura 92 Generación del número de curva de HEC-GeoHMS

Para realizar el mapa de distribución de numero de curva se utilizó la barra de HEC-GeoHMS > Utility > Generate CN Grid, Este se realizó en un proyecto diferente.

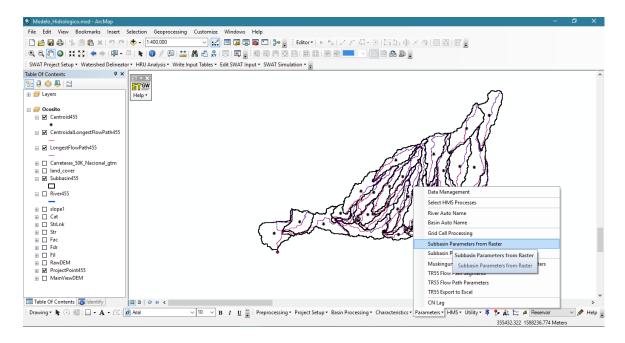


Figura 93 Parametros de las subcuencas de HEC-GeoHMS

Se realizó un promedio de número de curva por subcuenca, HEC-GeoHMS > Parameters > Subbasin Parameters from Raster.

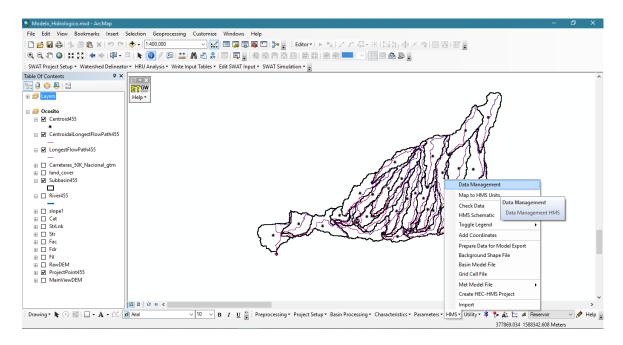


Figura 94 Base de datos de HMS en HEC-GeoHMS

Actualizamos la información para verificar que la información se encuentre en los campos que corresponde, HEC-GeoHMS > HMS > Data Managment.

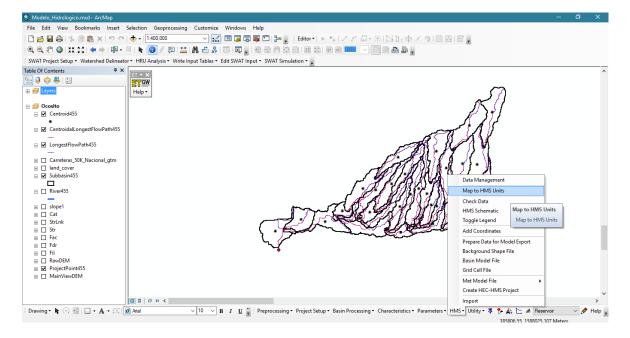


Figura 95 Mapa en unidades de HMS de HEC-GeoHMS

Se verifico que los campos se encontraran completos para generar el mapa en HMS en formato SI, HEC-GeoHMS > HMS > Map to HMS Units.

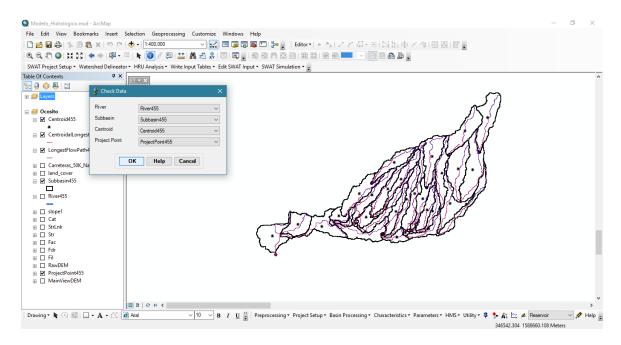


Figura 96 Revisión de datos de HEC-GeoHMS

Se corroboro que el formato se guardara correctamente, comenzando con HEC-GeoHMS > HMS > Check Data.

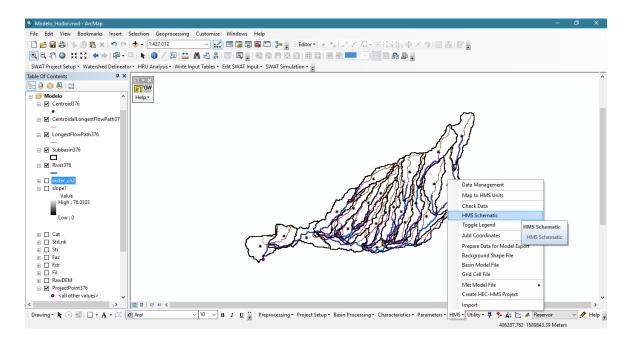


Figura 97 Esquema de HMS de HEC-GeoHMS

HEC-GeoHMS > HMS > HMS Schematic.

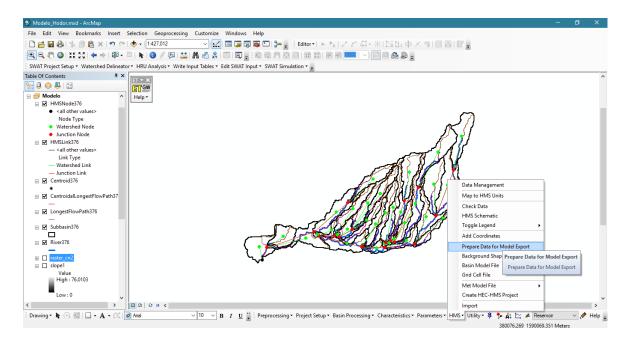


Figura 98 Preparar los datos para exporter el modelo de HEC-GeoHMS

HEC-GeoHMS > HMS > Prepare Data for Model Export.

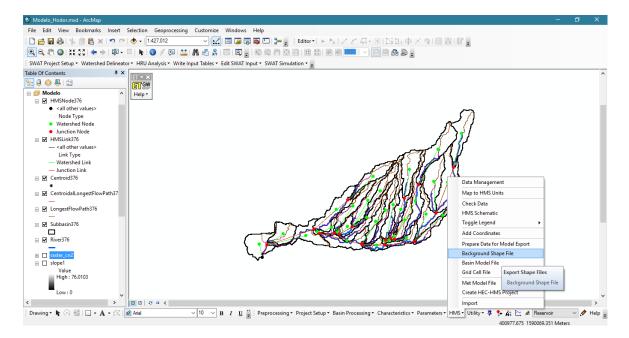


Figura 99 Base de una capa de HEC-GeoHMS

HEC-GeoHMS > HMS > Background Shape File.

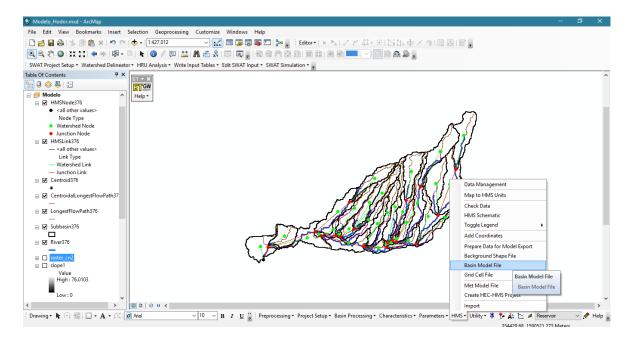


Figura 100 Archivo del modelo de cuenca de HEC-GeoHMS

HEC-GeoHMS > HMS > Basin Model File

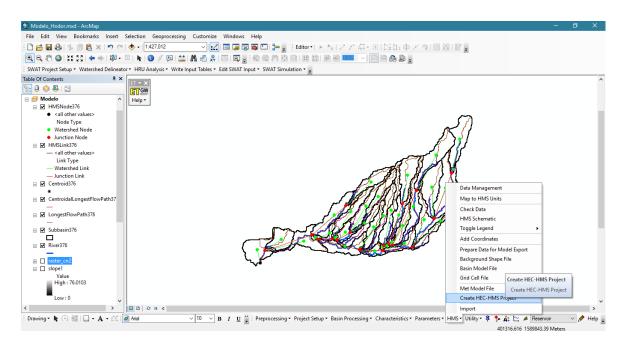


Figura 101 Crear el proyecto de HEC-HMS de HEC-GeoHMS

Al finalizar la revisión de campos y estar completos, se creó el proyecto HEC-GeoHMS > HMS > Create HEC-HMS Project. El proyecto generado debe encontrarse en un formato .dss para utilizar el software HEC-HMS.

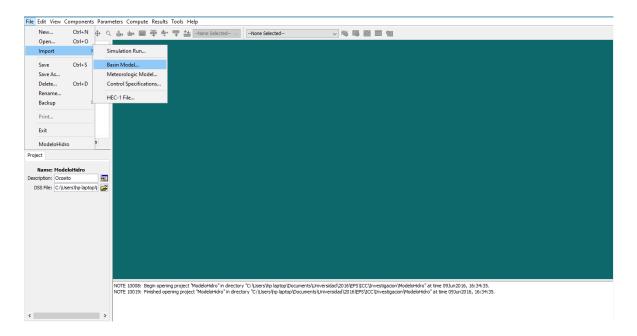


Figura 102 Modelo de la cuenca de HEC-HMS

Para generar el modelo, se utilizó HEC-HMS, importando el proyecto generado en ArcGIS ®. File > Import > Basin Model...

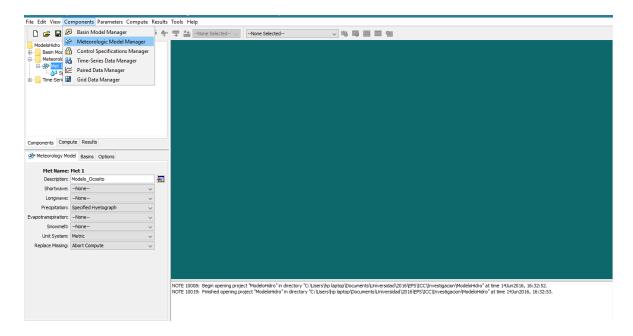


Figura 103 Modelo meteorológico de HEC-HMS

Luego se procedió a generar los parámetros de la modelación, Components > Basin Model Manager. Continuamos con el modelo meteorológico, Components > Meteorologic Model Manager.

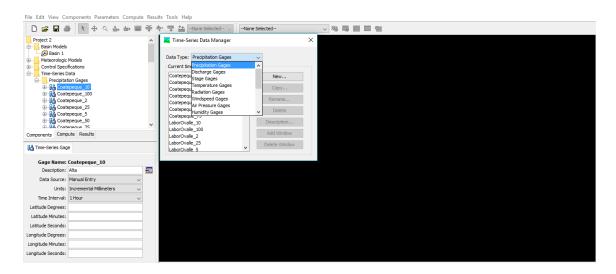


Figura 104 Datos de las series de tiempo de HEC-HMS

Se procedió a generar la base de datos de las estaciones meteorológicas en los diferentes tiempos de retorno, Components > Time-Series Data Manager.

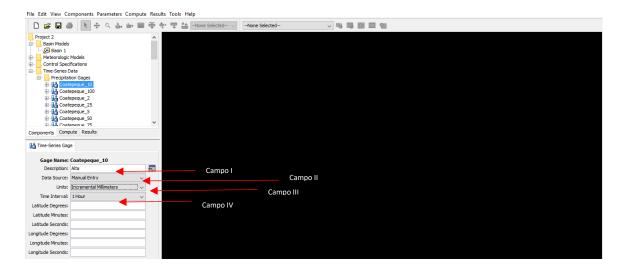


Figura 105 Tablas de series de tiempo de estaciones meteorológicas de HEC-HMS

Los campos que se encuentran en la figura 43, se complementaron según la base de datos de las estaciones meteorológicas, la descripción hace referencia en la ubicación en la que se encuentra la estación meteorológica, siendo parte alta, media o litoral de la cuenca, los datos se introdujeron de manera manual, utilizando los datos obtenidos de las pluviogramas generados con Gumbel con intervalos de tiempo de 60 minutos, las unidades de una estación meteorológica es incrementos en milímetros.

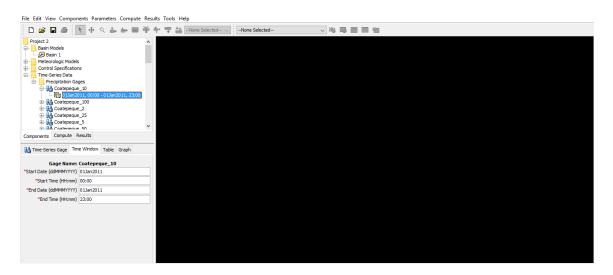


Figura 106 Ventana de tiempos de series de tiempo de estaciones de HEC-HMS

Se introdujo una fecha para cada estación, el cual es necesaria para que se realice una simulación del comportamiento de la lluvia. Click derecho sobre la estación y seleccionar Create Time Window. La fecha introducida es un ejemplo, no requiere una fecha específica, siempre y cuando cumpla con un periodo de tiempo de un día.

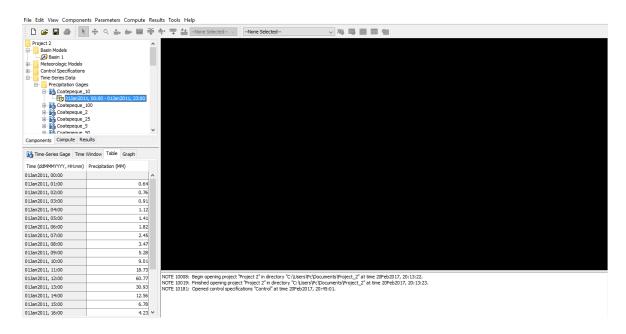


Figura 107 Tabla de las estaciones meteorológicas de HEC-HMS

Los datos obtenidos en los pluviogramas de colocaron en la tablas que se genera para cada estación con el paso anterior.

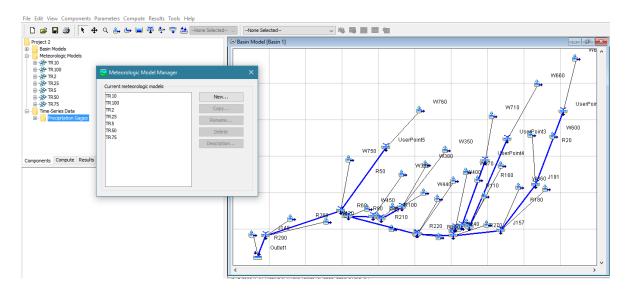


Figura 108 Ventana del modelo meteorológico de HEC-HMS

Los datos de lluvia deben ser distribuidos según el área de influencia sobre las subcuencas dependiendo de la ubicación de las estaciones.

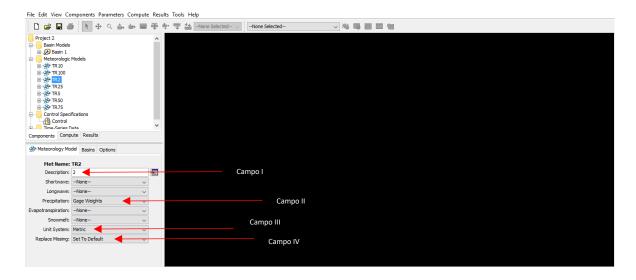


Figura 109 Modelo meteorológico de HEC-HMS

Los campos identificados en la figura 47 se completaron para cada tiempo de retorno.

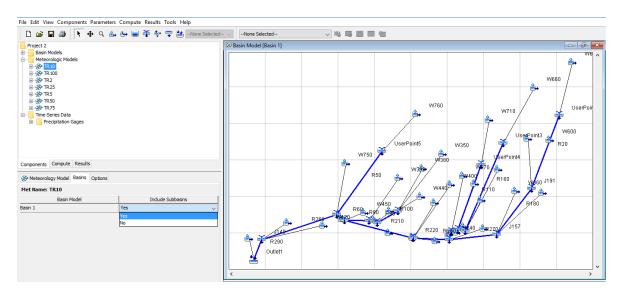


Figura 110 Cueca del modelo meteorológico de HEC-HMS

Se incluyó el modelo de la cuenca para que identificara cada una de las subcuencas.

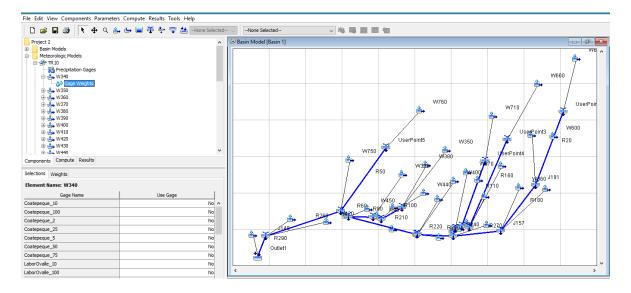


Figura 111 Selección de las estaciones a utilizar de HEC-HMS

Se identificaron las subcuencas de Ocosito, en la opción de selección se identificaron las estaciones meteorológicas que predominan en el área de influencia de cada subcuenca, esto a través de los polígonos de Thiessen.

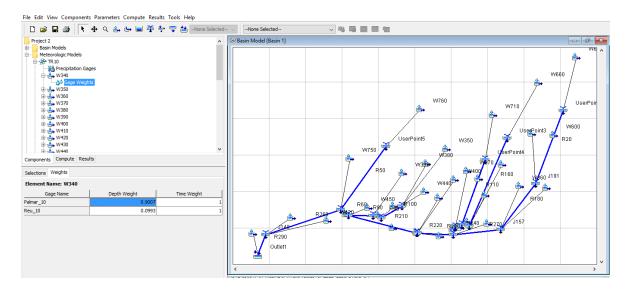


Figura 112 Precipitación de estaciones meteorológicas de HEC-HMS

Identificada la estación o estaciones, colocamos el área de influencia en porcentajes que representaba a las subcuencas.

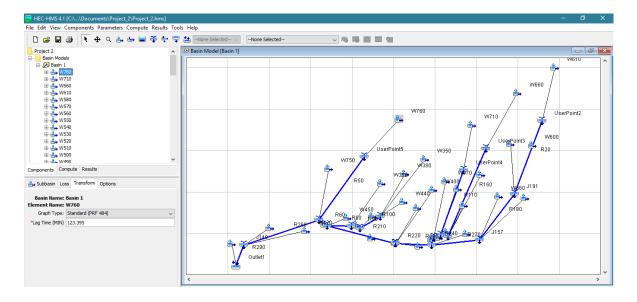


Figura 113 Modificación de componentes de subcuencas de HEC-HMS

Calculamos el Lag Time (MIN) de cada subcuenca, Basin Models > Basin 1 > W760 (nombre de subcuenca) > Transform > Lag Time (MIN). Se realizo una modificación del valor de Lag Time (MIN), se obtuvo un promedio con el valor que HEC-HMS asigna a las subcuencas y las metodologías Kirpich o Californiana y Giandotti.

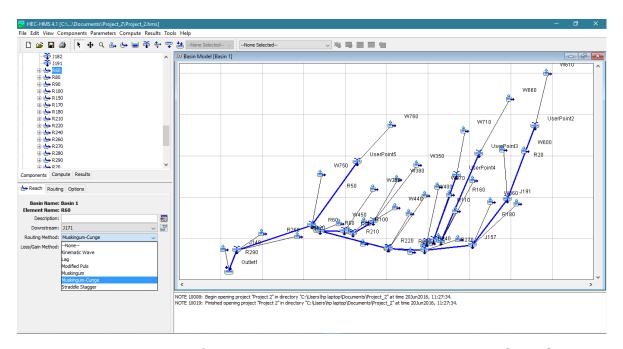


Figura 114 Método de ruta del modelo de cuenca de HEC-HMS

Para el caso de las rutas seleccionamos la metodología de Muskingum-Cunge, donde se introdujo valores de las corrientes, Reach > Loss/Gain Method.

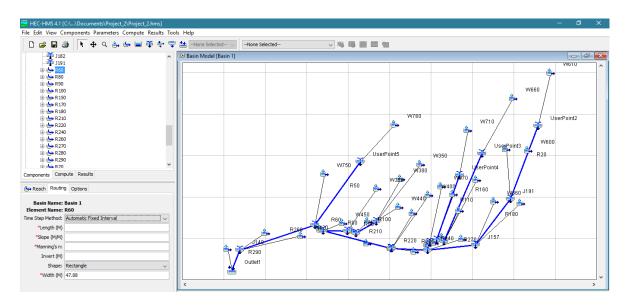


Figura 115 Ventana de ruta de HEC-HMS

Al tener definido el método (Muskingum-Cunge) en Routing se completaron los campos de Length (M), Slope (M/M), Manning's n: y Width (M).

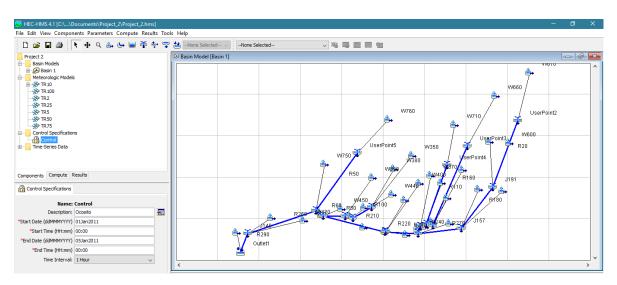


Figura 116 Ventana de especificaciones de control de HEC-HMS

Establecimos especificaciones para generar el modelo Components > Control Specifications Manager. No se necesita de una fecha específica para la modelación. Time Interval se determina según a criterio y precisión.

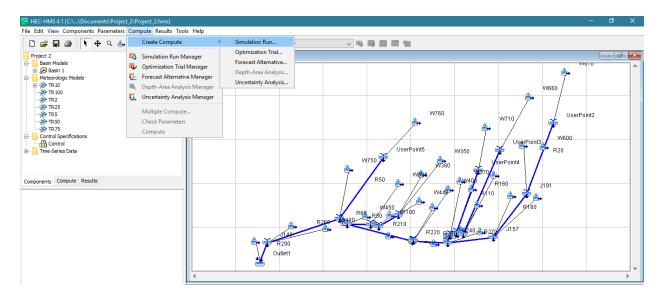


Figura 117 Realizar simulación de HEC-HMS

Para generar el modelo, se realizó una simulación para cada tiempo de retorno, Compute > Create Compute > Simulation Run... Para la simulación se realizaron cuatro pasos, paso 1: asignar un nombre a la simulación, paso 2: incluir el modelo base, paso 3: seleccionar el modelo meteorológico (tiempo de retorno que corresponde) y paso 4: seleccionamos las especificaciones de control.

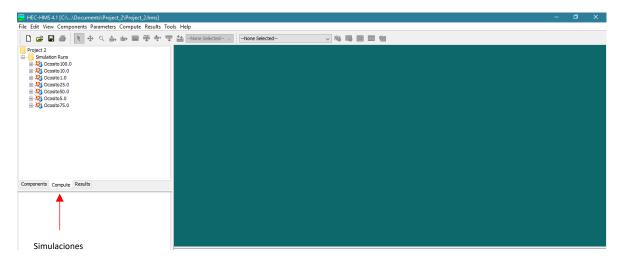


Figura 118 Simulaciones del proyecto de HEC-HMS

Para verificar que las simulaciones se encontraban, nos dirigimos a la opción seleccionada en la figura 56.

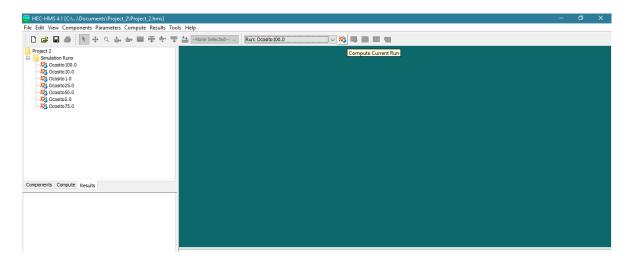


Figura 119 Simulaciones del modelo de HEC-HMS

Para la simulación del modelo hidrológico, seleccionamos la opción de Compute Current Run y en Resul proyecta los caudales.

9.3 Datos Pluviométricos

La base de datos utilizada para la elaboración de la modelación hidrológica fue de las estaciones meteorológicas mencionadas con anterioridad en la sección de clima, la cual fueron tomas como base para realizar un área de influencia a partir de los polígonos de Thiessen.

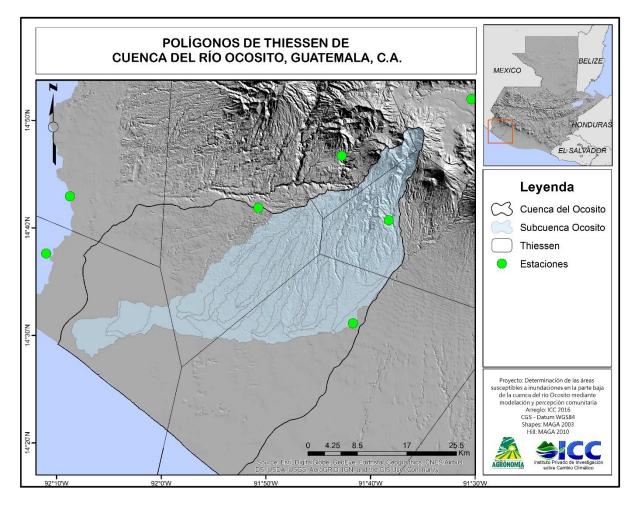


Figura 120A Mapa de polígonos de Thiessen

Cuadro 40A Resultados de caudales del Software Hec-HMS

UserPoint4	39.72195	86.9	169.5	189.8	128.6	63.9	36.4	23.2
UserPoint5	27.9252	127.4	208.8	208.8	140.6	73.4	44.3	29.4
J132	509.146075	1149.4	2120.2	2538.3	1878.7	1092.5	703.5	509.4
J137	445.568325	937.2	1729.1	2153.2	1526.6	830.8	505.2	336.4
J140	819.562075	1105.1	1744.1	2171.6	2489.9	2095.6	1834.2	1695.4
J145	176.65875	356.4	710.4	898.3	622.7	337.8	204	135
J148	110.995	185.4	375.6	498.2	355.7	192.9	116.3	76.9
J151	214.02285	496.9	941.6	1144.8	817.7	448.2	273.6	182.9
J154	52.114	236.3	395.3	383	319.9	252.3	219.6	198.9
J157	212.917875	405.9	713.6	907.9	620.8	329.4	196.4	129.4
J160	679.593725	1598.4	2828.3	3162.6	2700.3	1888.7	1538.4	1382.7
J163	131.15675	548.6	852.7	699.2	725.4	649.6	612.9	591.6
J168	98.723475	406.2	627.4	523.5	543.2	484.4	457.5	443.1
J171	755.467075	1800.3	3162.3	3454.9	3043.5	2184.2	1810.6	1641.3
J182	56.905475	242.4	343	280.5	290.8	228.7	185.8	152.9
J191	149.913	227.7	404.2	506.5	322.8	157.6	88.4	56.3
R60	679.593725	1591.1	2809.3	3147.9	2694.5	1886.7	1536.4	1380.6
R80	131.15675	541.9	839.7	691.5	721.5	646.2	609.4	587.8
R90	98.723475	405	625.3	522.2	542.5	483.9	456.9	442.4
R100	56.905475	241.9	342.3	280.1	290.5	228.5	185.6	152.8
R150	176.65875	356.3	709.8	897.9	622.6	337.7	203.9	135
R170	110.995	185	374.9	497.8	355.5	192.9	116.3	76.9
R180	149.913	227.5	403.9	506.2	322.7	157.5	88.4	56.3
R210	509.146075	1110.3	2011	2449.6	1847.5	1084.4	701.4	506.7
R220	52.114	236.3	395.3	383	319.9	252.3	219.6	198.9
R240	214.02285	495.8	937	1141.1	816.5	447.9	273.5	182.9
R260	755.467075	1028.2	1612.7	2049	2265.8	1772.2	1452.9	1276.7
R270	212.917875	405	712.1	906.5	620.4	329.3	196.4	129.4
R280	445.568325	932.8	1718.6	2145.2	1523.8	830.2	505	336.3
R290	819.562075	1104.6	1743	2170.5	2488.9	2095.1	1833.8	1694.9
R20	44.637	35.8	71.6	99.7	64.4	32	18.4	11.8
R160	49.136	39.3	90.1	124.9	80.8	37.4	20	12.4
R110	39.72195	86.8	169.3	189.6	128.6	63.9	36.4	23.2
R50	27.9252	127	208.2	208.2	140.5	73.4	44.3	29.4